DATA SHEET

TDA5636B; TDA5637B
 9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

Product specification
Supersedes data of 1995 August 01
File under Integrated Circuits, IC02

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band

FEATURES

- Balanced mixer with a common emitter input for band A (single input)
- 2-pin oscillator for bands A and B
- Balanced mixer with a common base input for bands B and C (balanced input)
- 4-pin oscillator for band C
- Local oscillator buffer output for external prescaler
- SAW filter preamplifier with a low output impedance to drive the SAW filter directly
- Band gap voltage stabilizer for oscillator stability
- Electronic band switch
- External IF filter between the mixer output and the IF amplifier input
- Pin-to-pin compatible with TDA5636; TDA5637 family (same function with asymmetrical IF output).

APPLICATIONS

- 3-band all channel TV and VCR tuners
- Any standard.

GENERAL DESCRIPTION

The TDA5636B and TDA5637B are monolithic integrated circuits that perform the mixer/oscillator functions for bands A, B and C in TV and VCR tuners. These low-power mixer/oscillators require a power supply of 9 V and are available in a very small package.

The devices give the designer the capability to design an economical and physically small 3-band tuner.

They are suitable for European standards, as illustrated in Fig.17, with the following RF bands:

- 48.25 to 168.25 MHz
- 175.25 to 447.25 MHz
- 455.25 to 855.25 MHz .

With an appropriate tuned circuit, they are also suitable for NTSC all channel tuners (USA and Japan). The tuner development time can be drastically reduced by using these devices.

These circuits belong to the TDA5636/TDA5737 family which has exactly the same function with an IF amplifier having an asymmetrical IF output to drive a 75Ω load. It is possible to build tuners with either an asymmetrical or a symmetrical IF output with one main tuner lay-out.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage		-	9.0	-	V
I_{P}	supply current	band A	-	43	-	mA
		band B	-	39	-	mA
		band C	-	42	-	mA
f_{RF}	frequency range	RF input; band A; note 1	45	-	180	MHz
		RF input; band B; note 1	160	-	470	MHz
		RF input; band C; note 1	430	-	860	MHz
G_{v}	voltage gain	band A	-	25	-	dB
		band B	-	36	-	dB
		band C	-	36	-	dB
NF	noise figure	band A	-	7.5	-	dB
		band B	-	6	-	dB
		band C	-	7	-	dB
V 。	output voltage to get 1% cross modulation in channel	band A	-	121	-	$\mathrm{dB} \mu \mathrm{V}$
		band B	-	120	-	$\mathrm{dB} \mu \mathrm{V}$
		band C	-	119	-	$\mathrm{dB} \mu \mathrm{V}$

Note

1. The limits are related to the tank circuits used in Fig. 17 and the intermediate frequency. Frequency bands may be adjusted by the choice of external components.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	NAME	DESCRIPTION			VERSION
TDA5636BT ${ }^{(1)}$	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1		
TDA5636BM	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1		
TDA5637BT	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1		
TDA5637BM	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1		

Note

1. The TDA5636BT is available on request.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band
BLOCK DIAGRAM

[^0]The numbers given in parenthesis represent the TDA5637B.
The TDA5636B and TDA5637B are pin compatible with the TDA5636 and TDA5637 respectively.
Fig. 1 Block diagram.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

PINNING

SYMBOL	PIN		DESCRIPTION
	TDA5636B	TDA5637B	
CIN1	1	24	band C input 1
CIN2	2	23	band C input 2
RFGND	3	22	ground for RF inputs
BIN1	4	21	band B input 1
BIN2	5	20	band B input 2
AIN	6	19	band A input
VP 2	7	18	supply voltage
MIXOUT1	8	17	mixers output 1
MIXOUT2	9	16	mixers output 2
GND1	10	15	ground 1 (0 V)
LOOUT1	11	14	local oscillator amplifier output 1
LOOUT2	12	13	local oscillator amplifier output 2
IFOUT1	13	12	IF amplifier output 1
IFOUT2	14	11	IF amplifier output 2
BS	15	10	electronic band switch input
GND2	16	9	ground 2 (0 V)
BOSCOC	17	8	band B oscillator output collector
COSCIB1	18	7	band C oscillator input base 1
BOSCIB	19	6	band B oscillator input base
COSCOC1	20	5	band C oscillator output collector 1
COSCOC2	21	4	band C oscillator output collector 2
AOSCOC	22	3	band A oscillator output collector
COSCIB2	23	2	band C oscillator input base 2
AOSCIB	24	1	band A oscillator input base

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

Fig. 2 Pin configuration (TDA5636B).

Fig. 3 Pin configuration (TDA5637B).

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage	-0.3	+10.5	V
$\mathrm{~V}_{\mathrm{SW}}$	switching voltage	0	+10.5	V
I_{O}	output current of each pin to ground	-	-10	mA
$\mathrm{t}_{\mathrm{sc}(\max)}$	maximum short-circuit time (all pins)	-	10	s
$\mathrm{~T}_{\mathrm{stg}}$	IC storage temperature	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-10	+80	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Human Body Model:

- For TDA5636B GND (10) (16), RFGND (3), and $\mathrm{V}_{\mathrm{P}}(7)$ are separate.
- For TDA5637B GND (9) (15), RFGND (22), and $\mathrm{V}_{\mathrm{P}}(18)$ are separate.

All pins withstand 2000 V in accordance with the "UZW-B0/FQ-A302" specification equivalent to the "MIL-STD-883C" category $\mathrm{B}(2000 \mathrm{~V}) ; \mathrm{R}=1500 \Omega ; \mathrm{C}=100 \mathrm{pF}$.

Machine Model:

- For TDA5636B GND (10) (16), RFGND (3), and V_{P} (7) are separate.
- For TDA5637B GND (9) (15), RFGND (22), and $\mathrm{V}_{P}(18)$ are separate.

All pins withstand 175 V in accordance with the "UZW-B0/FQ-A302" specification (date of issue: Nov 6th, 1990); $\mathrm{R}=0 \Omega$; $\mathrm{C}=200 \mathrm{pF}$.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j \text {-a }}$	thermal resistance from junction to ambient in free air		
	SSOP24	120	K/W
	SO24	75	K/W

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

TDA5636B; TDA5637B

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit of Fig.17; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage		8.1	9.0	9.9	V
IP	supply current	band A	-	43	48	mA
		band B	-	39	44	mA
		band C	-	42	47	mA
$\mathrm{V}_{\text {SW }}$	switching voltage	band A	0	-	1.1	V
		band B	1.6	-	2.4	V
		band C	3.0	-	V_{P}	V
Isw	switching current	band A	-	-	2	$\mu \mathrm{A}$
		band B	-	-	5	$\mu \mathrm{A}$
		band C ; $\mathrm{V}_{\mathrm{SW}(\mathrm{C})}=5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Band A mixer (including IF amplifier)						
f_{RF}	RF frequency	note 1	45	-	180	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Fig.4; note 2	22.5	25.0	27.5	dB
		$\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$; see Fig.4; note 2	22.5	25.0	27.5	dB
NF	noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figs 5 and 6	-	7.5	9.5	dB
		$\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$; see Figs 5 and 6	-	7.5	9.5	dB
V 。	output voltage	1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Fig. 7	118	121	-	$\mathrm{dB} \mu \mathrm{V}$
		1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$; see Fig. 7	119	122	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage	10 kHz pulling in channel; $\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$; note 3	-	104	-	$\mathrm{dB} \mu \mathrm{V}$
gos	optimum source conductance	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	0.5	-	mS
		$\mathrm{f}_{\mathrm{RF}}=180 \mathrm{MHz}$	-	1	-	mS
Y_{i}	input admittance	see Fig. 12	-	-	-	mS
C_{i}	input capacitance	$\mathrm{f}_{\mathrm{RF}}=50$ to 180 MHz ; see Fig. 12	-	2	-	pF

Band A oscillator

$\mathrm{f}_{\text {OSC }}$	oscillator frequency	note 4	80	-	216	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta \mathrm{V}_{\mathrm{p}}=10 \%$; note 5	-	-	200	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with no compensation; NP0 capacitors; note 6	-	-	600	kHz
		5 s to 15 min after switch on; note 7	-	-	200	kHz

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Band B mixer (including IF amplifier)						
f_{RF}	RF frequency	note 1	160	-	470	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig.8; note 2	33	36	39	dB
		$\mathrm{f}_{\mathrm{RF}}=470 \mathrm{MHz}$; see Fig.8; note 2	33	36	39	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig. 9	-	6.0	8.0	dB
		$\mathrm{f}_{\mathrm{RF}}=470 \mathrm{MHz}$; see Fig. 9	-	7.0	9.0	dB
V 。	output voltage	1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig. 10	118	121	-	$\mathrm{dB} \mu \mathrm{V}$
		1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=470 \mathrm{MHz}$; see Fig. 10	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage	10 kHz pulling in channel; $\mathrm{f}_{\mathrm{RF}}=470 \mathrm{MHz}$; note 3	-	91	-	$\mathrm{dB} \mu \mathrm{V}$
	input voltage	$\mathrm{N}+5-1 \mathrm{MHz}$ pulling; $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig. 11	-	77	-	$\mathrm{dB} \mu \mathrm{V}$
Z_{i}	input impedance ($\left.\mathrm{R}_{\mathrm{S}}+\mathrm{j} L_{s} \omega\right)$	$\mathrm{f}_{\mathrm{RF}}=170$ to 470 MHz ; see Fig. 13	-	30	-	Ω
		$\mathrm{f}_{\mathrm{RF}}=170$ to 470 MHz ; see Fig. 13	-	10	-	nH

Band B oscillator

$\mathrm{f}_{\text {OSc }}$	oscillator frequency	note 4	200	-	500	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta \mathrm{V}_{\mathrm{P}}=10 \%$; note 5	-	-	400	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with no compensation; NP0 capacitors; note 6	-	-	2	MHz
		5 s to 15 min. after switch on; note 7	-	-	300	kHz

Band C mixer (including IF amplifier)

$\mathrm{f}_{\text {RF }}$	RF frequency	note 1	430	-	860	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig.8; note 2	33	36	39	dB
		$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig.8; note 2	33	36	39	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig. 9	-	7.0	9.0	dB
		$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig. 9	-	8.0	10.0	dB
V 。	output voltage	1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig. 10	116	119	-	$\mathrm{dB} \mu \mathrm{V}$
		1% cross modulation in channel; $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig. 10	116	119	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage	10 kHz pulling in channel; $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; note 3	-	103	-	$\mathrm{dB} \mu \mathrm{V}$
	input voltage	$\mathrm{N}+5-1 \mathrm{MHz}$ pulling; $\mathrm{f}_{\mathrm{RF}}=820 \mathrm{MHz}$; see Fig. 11	-	79	-	$\mathrm{dB} \mu \mathrm{V}$
Z_{i}	input impedance$\left(R_{s}+j L_{s} \omega\right)$	$\mathrm{f}_{\mathrm{RF}}=430$ to 860 MHz ; see Fig. 14	-	40	-	Ω
		$\mathrm{f}_{\mathrm{RF}}=430$ to 860 MHz ; see Fig. 14	-	10	-	nH

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Band C oscillator						
fosc	oscillator frequency	note 4	470	-	900	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta V_{P}=10 \%$; note 5	-	-	500	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with compensation; note 6	-	-	1400	kHz
		5 s to 15 min . after switch on; note 7	-	-	400	kHz
LO output						
S_{22}	output reflection coefficient	see Fig. 16	-	-	-	
Yo	output admittance$\left(Y_{P}+j \omega C_{P}\right)$	see Fig. 16	-	400	-	Ω
		see Fig. 16	-	1.0	-	pF
V_{0}	output voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	83	91	100	$\mathrm{dB} \mu \mathrm{V}$
SRF	spurious signal on LO output with respect to LO output signal	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; note 8	-	-	-10	dBc
HLO	LO signal harmonics with respect to LO signal	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-	-	-10	dBc
IF amplifier characteristics						
S_{22}	output reflection coefficient	magnitude; through 1 nF ; see Fig. 15	-	-21.3	-	dB
		phase; through 1 nF ; see Fig. 15	-	49	-	deg
Z_{0}	output impedance$\left(R_{s}+j L_{s} \omega\right)$	R_{S}; through 1 nF	-	110	-	Ω
		L_{s}; through 1 nF	-	65	-	nH

Notes

1. The RF frequency range is defined by the oscillator frequency range and the intermediate frequency.
2. The gain is defined as the transducer gain (measured in Fig.17) plus the voltage transformation ratio of L6 to L7 ($10: 2,15.4 \mathrm{~dB}$ including transformer loss).
3. The input level causing 10 kHz frequency detuning at the LO output; $\mathrm{f}_{\mathrm{osc}}=\mathrm{f}_{\mathrm{RF}}+33.4 \mathrm{MHz}$.
4. Limits are related to the tank circuits used in Fig.17. Frequency bands may be adjusted by the choice of external components.
5. The frequency shift is defined as the change in oscillator frequency when the supply voltage varies from $V_{P}=9$ to 8.1 V and from $\mathrm{V}_{\mathrm{P}}=9$ to 9.9 V .
6. The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25$ to $0^{\circ} \mathrm{C}$ and from $\mathrm{T}_{\mathrm{amb}}=25$ to $50^{\circ} \mathrm{C}$.
7. Switch on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch on.
8. SRF: spurious signal on LO with respect to LO output signal:

RF level $=120 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}<180 \mathrm{MHz}$
RF level $=107.5 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}=180$ to 225 MHz
RF level $=97 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}=225$ to 860 MHz .

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

$\mathrm{Z}_{\mathrm{i}}(\mathrm{AIN}) \gg 50 \Omega \Rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}+6 \mathrm{~dB}$.
$\mathrm{V}_{0}=\mathrm{V}^{\prime}$ meas $\times\left(\frac{50+27}{50}\right)+15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
$G_{v}=20 \log \frac{V_{0}}{V_{i}}$
Fig. 4 Band A gain measurement.

(a)

(b) For $f_{\mathrm{RF}}=150 \mathrm{MHz}$:
mixer A frequency response measured $=150.3 \mathrm{MHz}$, loss $=1.3 \mathrm{~dB}$ image suppression $=13 \mathrm{~dB}$
$\mathrm{C} 3=5 \mathrm{pF}$
$\mathrm{C} 4=25 \mathrm{pF}$
12 = semi rigid cable (RIM): 30 cm long
$13=$ semi rigid cable (RIM): 5 cm long
(semi rigid cable (RIM); $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$).

Fig. 5 Input circuit for optimum noise figure in band A.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

(1) $N F=N F_{\text {meas }}-$ loss (input circuit) $d B$.

Fig. 6 Noise figure measurement in band A.

$\mathrm{V}_{\text {'meas }}=\mathrm{V}_{0} \times\left(\frac{50+27}{50}\right)-15.4 \mathrm{~dB}$ (transformer ratio $\frac{\mathrm{N} 1}{\mathrm{~N} 2}=5$ and transformer loss).
Wanted output signal at $\mathrm{f}_{\mathrm{RFW}}=180 \mathrm{MHz}$: $\mathrm{V}_{\text {ow }}=104 \mathrm{~dB} \mu \mathrm{~V}$.
We measure the level of the unwanted signal $\mathrm{V}_{\text {ou }}$ causing $0.3 \% \mathrm{AM}$ modulation in the wanted output signal; $\mathrm{f}_{\mathrm{RFU}}=185.5 \mathrm{MHz}$.
$\mathrm{V}_{\text {ou }}=\mathrm{V}_{\text {'meas }} \times\left(\frac{50+27}{50}\right)+15.4 \mathrm{~dB}$.
The cross modulation measurements are done at these frequencies:
$-f_{\text {RFW }}=50.0 \mathrm{MHz} ; \mathrm{f}_{\text {RFU }}=55.5 \mathrm{MHz} ; \mathrm{f}_{\text {osc }}=88.9 \mathrm{MHz}$
$-f_{\text {RFW }}=180.0 \mathrm{MHz} ; \mathrm{f}_{\mathrm{RFU}}=185.5 \mathrm{MHz} ; \mathrm{f}_{\text {osc }}=218.9 \mathrm{MHz}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=38.9 \mathrm{MHz}, \mathrm{f}_{-3 \mathrm{dBBW}}=1.2 \mathrm{MHz}, \mathrm{f}_{-30 \mathrm{dBBW}}=2.64 \mathrm{MHz}$.

Fig. 7 Cross modulation measurement in band A .

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }} ; \mathrm{V}_{0}=\mathrm{V}^{\prime}$ meas $\times\left(\frac{50+27}{50}\right)+15.4 \mathrm{~dB}$ (transformer ratio $\frac{\mathrm{N} 1}{\mathrm{~N} 2}$ and transformer loss).
Voltage gain for band B and $C=20 \log \frac{V_{0}}{V_{i}}+\operatorname{loss}_{(\text {hybrid) }}$.
$\operatorname{loss}_{(\text {hybrid) }}=1 d B$.
Fig. 8 Gain measurement in bands B and C.

Loss of the hybrid: 1 dB .
$N F=N F_{\text {meas }}-$ loss of the hybrid.
Fig. 9 Noise figure measurement in bands B and C.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

Wanted output signal at $\mathrm{f}_{\mathrm{RFW}}$: $\mathrm{V}_{\text {ow }}=104 \mathrm{~dB} \mu \mathrm{~V}$.
We measure the level of the unwanted signal V_{ou} causing $0.3 \% \mathrm{AM}$ modulation in the wanted output signal.
$V_{\text {ou }}=V_{\text {meas }}^{\prime} \times\left(\frac{50+27}{50}\right)+15.4 \mathrm{~dB}$.
$\mathrm{f}_{\mathrm{RFU}}=\mathrm{f}_{\mathrm{RFW}}+5.5 \mathrm{MHz} ; \mathrm{f}_{\mathrm{OSC}}=\mathrm{f}_{\mathrm{RF}}+38.9 \mathrm{MHz}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=38.9 \mathrm{MHz}, \mathrm{f}_{-3 \mathrm{dBBW}}=1.2 \mathrm{MHz}, \mathrm{f}_{-30 \mathrm{dBBW}}=2.64 \mathrm{MHz}$.
Fig. 10 Cross modulation measurement in bands B and C.

Loss of the hybrid: 1 dB .
In band B : $f_{\text {RFW }}=391 \mathrm{MHz}$ (in band C: $\mathrm{f}_{\mathrm{RFW}}=781 \mathrm{MHz}$). These wanted signals are not used during the measurement. In band $B: f_{o s c}=429.9 \mathrm{MHz}$ (in band C: $\mathrm{f}_{\mathrm{osc}}=819.9 \mathrm{MHz}$).
In band B : $f_{\text {RFU }}=430 \mathrm{MHz}=\mathrm{f}_{\mathrm{RFW}}+5 \times 8 \mathrm{MHz}-1 \mathrm{MHz}$. (in band C: $\mathrm{f}_{\mathrm{RFU}}=820 \mathrm{MHz}=\mathrm{f}_{\mathrm{RFW}}+5 \times 8 \mathrm{MHz}-1 \mathrm{MHz}$).
We measure the level of the unwanted signal V_{iu} causing fm sidebands 30 dB below the oscillator carrier at the LO output.
$\mathrm{V}_{\mathrm{iu}}=\mathrm{V}_{\text {meas }}$ - loss of the hybrid.

Fig. $11 \mathrm{~N}+5-1 \mathrm{MHz}$ pulling measurement in bands B and C.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

Fig. 12 Input admittance $\left(\mathrm{S}_{11}\right)$ of the band A mixer input (40 to 200 MHz); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$.

Fig. 13 Input impedance $\left(S_{11}\right)$ of the band B mixer input (150 to 480 MHz); $Z_{0}=100 \Omega$.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

Fig. 14 Input impedance $\left(S_{11}\right)$ of the band C mixer input (420 to 880 MHz); $\mathrm{Z}_{0}=100 \Omega$.

Fig. 15 Output impedance $\left(\mathrm{S}_{22}\right)$ of the IF amplifier (20 to 60 MHz); $\mathrm{Z}_{0}=100 \Omega$.

9 V VHF hyperband and UHF mixer/oscillator

 for TV and VCR 3-band tuners

Fig. 16 Output admittance $\left(\mathrm{S}_{22}\right)$ of the LO amplifier (50 to 910 MHz); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

APPLICATION INFORMATION

The numbers in parenthesis represent the TDA5637B.
Fig. 17 Measurement and application circuit.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

TDA5636B; TDA5637B

Application diagram component values (see Fig.17)

Table 1 Capacitors
(all SMD and NP0 except C5 to C9 and C29)

NUMBER	VALUE
C1	2 pF
C2	2 pF
C3	82 pF
C4	2.2 nF
C5	$1 \mathrm{pF}(\mathrm{N} 750)$
C6	$1 \mathrm{pF}(\mathrm{N} 750)$
C7	$1 \mathrm{pF} \mathrm{(N750)}$
C8	$1 \mathrm{pF} \mathrm{(N750)}$
C9	$6 \mathrm{pF} \mathrm{(N470)}$
C10	100 pF
C11	2.2 nF
C12	2 pF
C13	4 pF
C14	150 pF
C15	2.2 nF
C16	1.2 nF
C17	1 nF
C18	1 nF
C19	1 nF
C20	18 pF
C21	18 pF
C22	1 nF
C23	1 nF
C24	1 nF
C25	1 nF
C26	1 nF
C27	1 nF
C28	2.2 nF
C29	$1 \mu F(e l e c t r o l y t i c) ~$
C30	1 nF
C31	18 pF

Table 2 Resistors (all SMD)

NUMBER	VALUE
R2	22Ω
R3	$47 \mathrm{k} \Omega$
R4	$2.2 \mathrm{k} \Omega$
R5	$22 \mathrm{k} \Omega$
R6	$47 \mathrm{k} \Omega$
R7	$47 \mathrm{k} \Omega$
R8	12Ω
R9	$15 \mathrm{k} \Omega$
R10	$33 \mathrm{k} \Omega$
R11	27Ω
R12	100Ω
R14	$47 \mathrm{k} \Omega$

Table 3 Diodes, coils and transformers

NUMBER	VALUE	
Diodes	BB132	
D1	BB134	
D2	BB146	
D3	8	
Coils $^{(1)}$	8 turns $(\varnothing 3 \mathrm{~mm})$	
L1	2 turns $(\varnothing 2.5 \mathrm{~mm})$	
L2	3 turns $(\varnothing 2.5 \mathrm{~mm})$	
L3	2 turns $(\varnothing 4 \mathrm{~mm})$	
L4		
Transformers ${ }^{(2)}$	2×6 turns	
L5	2×5 turns	
L6	2 turns	
L7		

Notes

1. Wire size for L 1 to L 4 is 0.4 mm .
2. Coil type: TOKO 7 kN ; material: 113 kN , screw core 03-0093, pot core 04-0026.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

INTERNAL PIN CONFIGURATION

SYMBOL	PIN		DESCRIPTION ${ }^{(1)}$	AVERAGE DC VOLTAGE ${ }^{(2)}$ IN (V)		
	TDA5636B	TDA5637B		BAND A	BAND B	BAND C
CIN1	1	24		0	0	2.2
CIN2	2	23		0	0	2.2
RFGND	3	22		0	0	0
BIN1	4	21		0	2.2	0
BIN2	5	20		0	2.2	0
AIN	6	19		2.2	1.2	1.2
V_{P}	7	18	supply voltage	9.0	9.0	9.0
MIXOUT1	8	17		9.0	9.0	9.0
MIXOUT2	9	16		9.0	9.0	9.0

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

SYMBOL	PIN		DESCRIPTION ${ }^{(1)}$	AVERAGE DC VOLTAGE ${ }^{(2)}$ IN (V)		
	TDA5636B	TDA5637B		BAND A	BAND B	BAND C
GND1	10	15		0	0	0
GND2	16	9	MLD106	0	0	0
LOOUT1	11	14		5.6	5.6	5.6
LOOUT2	12	13		5.6	5.6	5.6
IFOUT1	13	12		4.4	4.4	4.4
IFOUT2	14	11		4.4	4.4	4.4
BS	15	10		$\mathrm{V}_{\text {SW(A) }}$	$\mathrm{V}_{\text {SW(B) }}$	$\mathrm{V}_{\text {SW(C) }}$
BOSCOC	17	8		5.8	3.4	5.8
BOSCIB	19	6		1.2	2.3	1.2

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

TDA5636B; TDA5637B

SYMBOL	PIN		DESCRIPTION ${ }^{(1)}$	AVERAGE DC VOLTAGE ${ }^{(2)}$ IN (V)		
	TDA5636B	TDA5637B		BAND A	BAND B	BAND C
COSCIB1	18	7		1.4	1.4	2.3
COSCOC1	20	5		5.8	5.8	4.2
COSCOC2	21	4		5.8	5.8	4.2
COSCIB2	23	2	MLD112	1.4	1.4	2.3
AOSCOC	22	3		3.8	5.8	5.8
AOSCIB	24	1		2.1	1.0	1.0

Notes

1. The pin numbers in parenthesis represent the TDA5637B.
2. Average DC voltage measured in circuit of Fig.17.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band

TDA5636B; TDA5637B

PACKAGE OUTLINES

SO24: plastic small outline package; 24 leads; body width 7.5 mm
SOT137-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & \hline 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{array}{l\|} \hline 10.65 \\ 10.00 \end{array}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			$-92-11-17$	

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & \hline 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & \hline 0.8 \\ & 0.4 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT340-1		MO-150AG			$-93-09-08$	

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO and SSOP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

SO

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

SSOP

Wave soldering is not recommended for SSOP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions, only consider wave soldering SSOP packages that have a body width of 4.4 mm , that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).

MEthod (SO and SSOP)

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

9 V VHF hyperband and UHF mixer/oscillator for TV and VCR 3-band

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

[^0]: The numbers given in parenthesis represent the TDA5637B.

