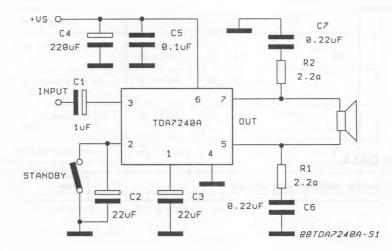
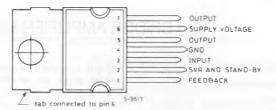

TDA7240A

20W BRIDGE AMPLIFIER FOR CAR RADIO


PRELIMINARY DATA

- COMPACT HEPTAWATT PACKAGE
- FEW EXTERNAL COMPONENTS
- OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD
- DUMP TRANSIENT
- THERMAL SHUTDOWN
- LOUDSPEAKER PROTECTION
- HIGH CURRENT CAPABILITY
- LOW DISTORTION / LOW NOISE

The TDA7240A is a 20W bridge audio amplifier IC designed specially for car radio applications. Thanks to the low external part count and compact Heptawatt 7-pin power package the TDA7240A occupies little space on the printed circuit board. Reliable operation is guaranteed by a comprehensive array of on-chip protection features. These include protection against AC and DC output short circuits (to ground and across the load), load dump transients, and junction overtemperature. Additionally, the TDA7240A protects the loudspeaker when one output is short-circuited to ground.


TYPICAL APPLICATION CIRCUIT

TDA7240A

CONNECTION DIAGRAM

(Top view)

ABSOLUTE MAXIMUM RATINGS

18	V
28	V
40	V
4.5	А
3.5	А
20	W
-40 to 150	°C
	28 40 4.5 3.5 20

(*) Internally limited

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the circuit of Fig. 1, $T_{amb} = 25^{\circ}C$, R_{th} (heatsink) = 4°C/W, $V_s = 14.4V$)

	Parameter	Test C	conditions	Min.	Typ.	Max.	Unit
Vs	Supply voltage		-			18	v
Vos	Output offset voltage					150	mV
ld	Total quiescent current	R _L = 4Ω			65	120	mA
Po	Output power	f = 1KHz	R _L = 4Ω	18	20		w
		d = 10%	R _L = 8Ω	10	12		
d	Distortion	$R_L = 4\Omega$ f = 1 KHz $P_0 = 50$ mW to 12W			0.1	0.5	%
		$R_L = 8\Omega$ $P_o = 50mW$	f = 1KHz to 6W		0.05	0.5	70
Gv	Voltage gain	f = 1KHz		39.5	40	40.5	dB
SVR	Supply voltage rejection	f = 100 Hz F	Rg = 10KΩ	35	40		dB
En	Total input noise	(*)	B = 10K0		2	4	μV
		(**)	•) R _s = 10KΩ		3		μ
η	Efficiency	$R_{L} = 4\Omega$ $P_{o} = 20W$	f = 1KHz		65		%
I _{sb}	Stand-by current				200		μΑ
Ri	Input resistance	f = 1KHz		70			KΩ
Vi	Input sensitivity	f = 1KHz P _o = 2W	R _L = 4Ω		28		mV
fL	Low frequency roll off (-3dB)	P _o = 15W	R _L = 4Ω			30	Hz
fн	High frequency roll off (-3dB)	P _o = 15W	$R_L = 4\Omega$	25			KHz
As	Stand-by attenuation	V _o = 2 V _{rms}		70	90		dB
V	2) Stand-by threshold					1	v

Bandwidth

(*) B = Curve A

(**) B = 22Hz to 22KHz

TDA7240A

Fig. 1 - Test and application circuit

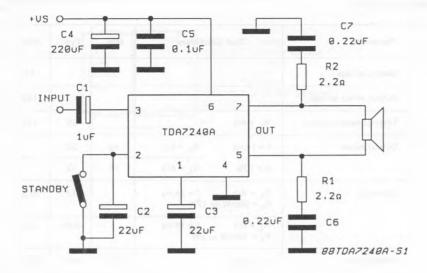
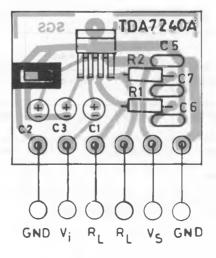



Fig. 2 - P.C. board and components layout of the circuit of Fig. 1 (1:1 scale)

CS-251/2

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of Fig. 1. Different values can be used, the following table can help the designer.

Component	Recommended Value	Purpose	Larger than	Smaller than
R1, R2	2.2 Ω	Frequency stability.	Danger of high frequency oscillation.	
C1	1µF	Input DC decoupling.	Higher turn 'ON' and stand-by delay.	Higher turn 'ON' pop. Higher low frequency cutoff.
C2	22µF	Ripple rejection.	Increase of SVR. Increase of the turn 'ON' delay.	Degradation of SVR.
C3	22µF	Feedback low frequency cutoff		Higher low frequency cutoff
C6, C7	0.22µF	Frequency stability.		Danger of oscillation.
C4	220µF	Supply filter.		Danger of oscillation.
C5	0.1µF	Supply by pass.		Danger of oscillation.

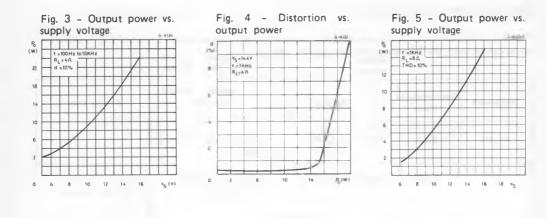
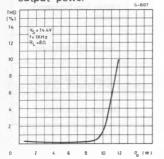



Fig. 6 - Distortion vs. output power

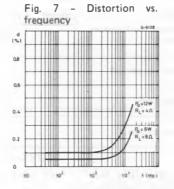


Fig. 8 - Supply voltage rejection vs. frequency

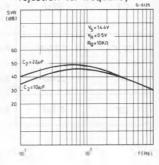
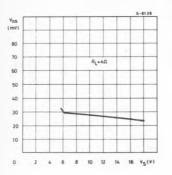
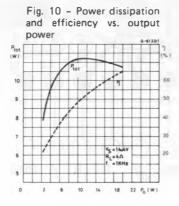
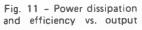
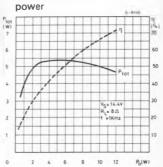




Fig. 9 - Output offset voltage vs. supply voltage





SGS-THOMSON

MICROELECTRONICS

51.

6/6