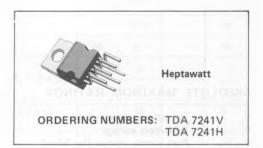
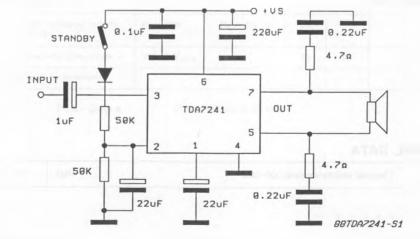
TDA7241

20W BRIDGE AMPLIFIER FOR CAR RADIO

ADVANCE DATA

- VERY LOW STAND-BY CURRENT
- GAIN = 26dB
- OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD

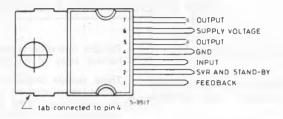

SGS-THOMSON


- COMPACT HEPTAWATT PACKAGE
- DUMP TRANSIENT
- THERMAL SHUTDOWN
- LOUDSPEAKER PROTECTION
- HIGH CURRENT CAPABILITY
- LOW DISTORTION / LOW NOISE

The TDA7241 is a 20W bridge audio amplifier IC designed specially for car radio applications. Thanks to the low external part count and compact Heptawatt 7-pin power package the TDA7241 occupies little space on the printed circuit board.

Reliable operation is guaranteed by a comprehensive array of on-chip protection features.

These include protection against AC and DC output short circuits (to ground and across the load), load dump transients, and junction overtemperature. Additionally, the TDA7241 protects the loudspeaker when one output is short-circuited to ground.


TEST CIRCUIT

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

TDA7241

CONNECTION DIAGRAM

(Top view)

ABSOLUTE MAXIMUM RATINGS

Vs	Operating supply voltage	18	V
Vs	DC supply voltage	28	V
Vs	Peak supply voltage (for 50ms)	40	V
I ₀ (*)	Peak output current (non repetitive $t = 0.1ms$)	4.5	А
I (*)	Peak output current (repetitive f ≥ 10Hz)	3.5	A
Ptot	Power dissipation at $T_{case} = 70^{\circ}C$	20	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

(*) Internally limited

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4	°C/W
------------------------	----------------------------------	-----	---	------

ELECTRICAL CHARACTERISTICS (Refer to the circuit of Fig. 1, $T_{amb} = 25^{\circ}$ C, R_{th} (heatsink)= 4°C/W, $V_s = 14.4$ V)

Parameter		Test Conditions		Min,	Тур.	Max.	Unit
Vs	Supply voltage					18	v
Vos	Output offset voltage					150	mV
d	Total quiescent current	R _L = 4Ω			65	120	mA
Po	Output power	f = 1 KHz d = 10%	$R_{L} = 4\Omega$	18	20		w
			R _L = 8Ω	10	12		
d	Distortion	$R_L = 4\Omega$ f = 1 KHz $P_0 = 50$ mW to 12W			0.1	0.5	
		$R_L = 8\Omega$ $P_o = 50 \text{ mW to}$	f = 1 KHz 6W		0.05	0.5	96
Gv	Voltage gain	f = 1 KHz			26		dB
SVR	Supply voltage rejection	f = 100 Hz		45	52		dB
En	Total input noise	(*)	- Fi _s = 10 K sz		2	4	μV
		(**)			3		
η	Efficiency	$R_L = 4\Omega$ $P_o = 20W$	f = 1 KHz		65		%
l _{sb}	Stand-by current				1		μA
R _i .	Input resistance	f = 1 KHz		70			KΩ
Vi	Input sensitivity	f = 1 KHz P _o = 2W	R _L = 4Ω		140		mV
fL	Low frequency roll off (-3 dB)	P _o = 15W	$R_{L} = 4\Omega$			30	Hz
fн	High frequency roll off (-3 dB)	P _o = 15W	R _L = 4Ω	25			KHz
As	Stand-by attenuation	V _o = 2 V _{rms}		70	90		dB
V _{TH} (pin	. 2) Stand-by threshold					1	V

Bandwidth

(*) B = Curve A

(**) B = 22 Hz to 22 KHz

SGS-THOMSON

51.