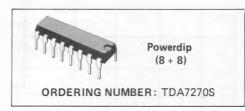


MULTIFUNCTION SYSTEM FOR TAPE PLAYERS

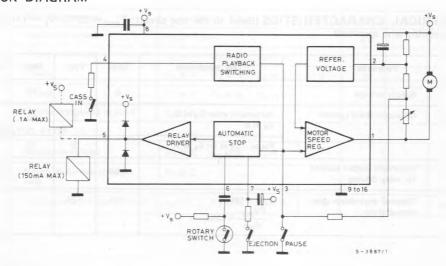
NOT FOR NEW DESIGN


The TDA7270S is a multifunction monolithic integrated circuit in a 16-lead dual in-line plastic package specially designed for use in car radios cassette players, but suitable for all applications requiring tape playback.

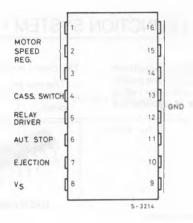
It has the following functions:

- Motor speed regulator
- Automatic stop
- Manual stop
- Pause
- Cassette ejection
- Radio Playback automatic switching.

The circuit incorporates also:


- Thermal protection
- Short circuit protection to ground (all the pins).

ABSOLUTE MAXIMUM RATINGS


Vs	Supply voltage	20	V
1,	Sink peak current at pin 1	2	Α
15	Sink peak current at pin 5	2	Α
Ptot	Power dissipation at T _{amb} ≤ 80°C	1	W
T_{stg} ; T_j	Storage and junction temperature	-40 to 150	°C

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

R _{th J-case}	Thermal resistance junction-ambient Thermal resistance junction-pins	max max	70 15	°C/W °C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; T_{amb} = 25°C; V_s = 14V; S_7 at B, unless otherwise specified)

Parameter		Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage		6		18	V
Id	Quiescent drain current	Automatic stop-S ₃ at B; S ₄ at B		5	10	mA
		Pause - S ₃ at A; S ₄ at A		9	15	
15	Maximum output current for relay driving		150			mA
T _{sd}	Thermal shut-down case temperature	$P_{tot} = 1W$ $(\frac{\Delta V_{ref}}{V_{ref}} = -5\%)$	105	125		°C

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions	Min.	Тур.	Max.	Uni
MOTOR	R SPEED CONTROL					
I _{MS}	Starting current (pin 1)		1			А
V _{ref}	Reference voltage (pin 2-3)	I _M = 100 mA	1.15	1.25	1.35	V
$\frac{\Delta V_{ref}}{V_{ref}}/\Delta V_{s}$		I _M = 100 mA V _s = 8 to 18V		0.1	0.4	%/V
∆V _{ref} V _{ref} /∆ [†] M		I _M = 50 to 400 mA		0.01	0.03	%/m/
$\frac{\Delta V_{ref}}{V_{ref}}$	ΔΤ	I _M = 100 mA T _{amb} = -20 to 70°C		0.01		%/°C
V ₂	Operating voltage	I_{M} = 100 mA $\frac{\Delta V_{ref}}{V_{ref}}$ = -5%	2.4			٧
K	Reflection coeff.(K= I _M /I _T see fig. 12)	I _M = 100 mA	18	20	22	_
$\frac{\Delta K}{K} / \Delta V$	V _s	I _M = 100 mA V _s = 8V to 18V		0.3	1	%/V
<u>ΔΚ</u> /ΔΙ	м	I _M = 50 to 400 mA		0.005	0.02	%/m.A
<u>∆K</u> /∆T		I _M = 100 mA T _{amb} = -20 to 70° C		0.01		%/°C
PAUSE						
13	Current consumption	S ₄ at A	1.4			mA
V ₈₋₁		S ₄ at A			0.2	V
JECTIC	ON					
17		S ₂ in A	20			μА
V ₅₋₈	Saturation voltage	I ₅ = 100 mA		2.1	3	V
V ₅	Saturation voltage	I ₅₋₈ = 1.5A		2.2	3	V
V ₄	(Pause condition)	S ₁ at A S ₃ at A S ₄ at A	6			V
V ₄	(Radio)	S ₁ at A S ₃ at B S ₄ at B	6	9		V
V4	(Tape)	S ₁ at A S ₃ at A S ₄ at B			1.7	V
Ro	Output impedance at pin 4	S ₃ at B		16	22	ΚΩ
UTOM	ATIC STOP					
V ₈₋₁	Saturation voltage	S ₁ at B S ₂ at B S ₃ at B			1	μА
¹ 6	Minimum current to avoid stop	S ₁ at C			1	μА
1 ₇₋₈	Load current for delay circuit	I ₆ = 0 S ₇ at A S ₂ at B	10.5	15	19.5	μА

APPLICATION INFORMATION

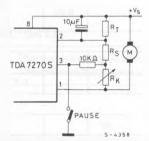
The TDA7270S incorporates four different functional blocks:

- 1) Motor speed control.
- 2) Autostop circuit.
- 3) Radio/Playback switching
- 4) Relay driver.

The motor speed control is a conventional circuit providing correction for the internal looses of the motor. Fig. 1 shows the external circuit.

The values of R_T , R_S and R_K determine the regulation characteristics and motor speed.

$$R_T = K \cdot R_M$$


where K = the IC regulator reflection coefficient and $R_M =$ motor internal resistance.

The following condition must be always satisfied

$$R_s \leq 4 R_T$$

Fig. 1

4/4

The voltage applied across the motor is given by

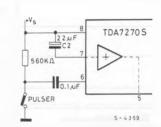
$$V_{8-1} = V_{ref} \left[1 + \frac{R_T}{R_S} \left(1 + \frac{1}{K} \right) + \frac{R_K}{R_S} \right]$$

and this is proportional to $R_{\mbox{\scriptsize K}}$ which therefore adjust the speed.

The voltage between pin 2 and the supply must not fall below 0.3V and so

$$[\;V_{\text{ref min}}\;(\frac{R_{T}}{R_{\text{S}}}) + I_{\text{M min}}\;(\frac{R_{T}}{K_{\text{max}}})\;] > 0.3V$$

The "pause" condition corresponds to $V_3 < 50 mV$; in this condition the motor will stop ($V_{1-8} < 0.2 V$), the capacitor C_2 on the autostop circuit (see below) will no longer be charged and the pin 4 (cassette/radio switch output) will be pulled high.


The autostop circuit is shown in Fig. 2

In normal operation the capacitor C_2 ($22\mu F$) is slowly charged by a constant current drawn by pin 7 of $15\mu A$, and each time the pulser (a switch on the cassette take-up speed shaft) closes, C_2 is discharged. If the cassette stops, and the pulse stops, the voltage on pin 7 falls.

This switches the power amplifier state and pin 5 goes low. Pin 5 can be used for one of two purposes:

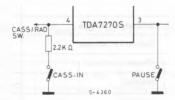

- to drive a stop warning light connected from pin 5 supply V_c;
- to actuate a solenoid wired either to ground (to release the cassette) or to supply (to eject the cassette).

Fig. 2

The pause and/or cassette/radio switching shown in Fig. 3 has an input/output on pin 4. If pin 4 is not used it should be grounded.

Fia. 3

This pin has the following logic.

Cass IN	Pause	Pin 4	Function
Open	Open	> 6V	motor off/radio on
Open	Close	> 6V	motor off/radio on
Close	Open	< 1.7V	motor on/cass. on
Close	Close	> 6V	pause/radio on