
INTEGRATED CIRCUITS

Product specification Supersedes data of April 1993 File under Integrated Circuits, IC02 June 1994

Philips Semiconductors

TDA8718

FEATURES

- 8-bit resolution
- Sampling rate up to 600 MHz
- ECL (100K family) compatible for digital inputs and outputs
- Overflow/Underflow output
- 50 Ω load drive capability
- Low input capacitance (5 pF typ.).

APPLICATIONS

- High speed analog-to-digital conversion
- Industrial instrumentation
- Data communication
- RF communication.

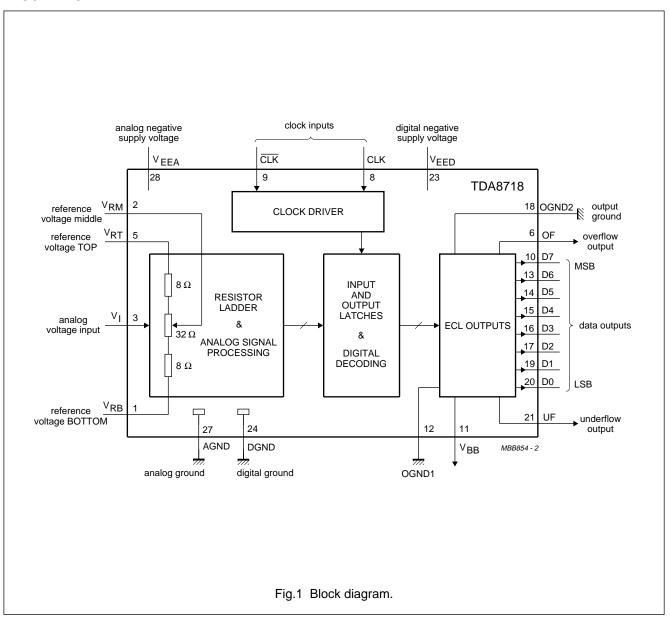
QUICK REFERENCE DATA

Measured over full voltage and temperature ranges, unless otherwise specified.

GENERAL DESCRIPTION

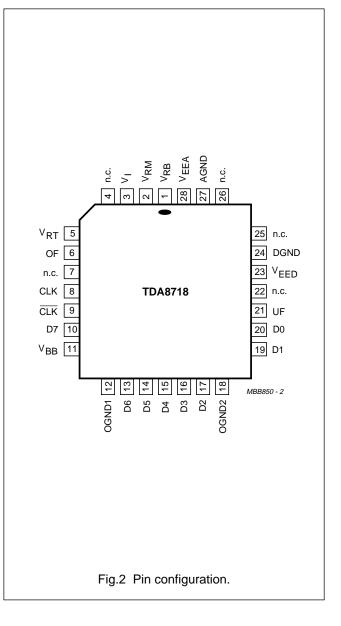
The TDA8718 is an 8-bit analog-to-digital converter (ADC) designed for professional applications. The device converts the analog input signal into 8-bit binary coded digital words at a sampling rate of 600 MHz. It has an effective bandwidth capability up to 150 MHz full-scale sine wave. All digital outputs are ECL compatible.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{EEA}	analog supply voltage		-4.2	-4.5	-4.8	V
V _{EED}	digital supply voltage		-4.2	-4.5	-4.8	V
I _{ref}	resistive ladder current	R = 48 Ω	30	45	60	mA
I _{EEA}	analog supply current		30	42	54	mA
I _{EED}	digital supply current		100	120	150	mA
I _{EEO(L)}	LOW level output supply current	R _L = 50 Ω	40	70	90	mA
I _{EEO(H)}	HIGH level output supply current	R _L = 50 Ω	155	170	185	mA
ILE	DC integral linearity error		-	±0.7	±1.0	LSB
DLE	DC differential linearity error		-	±0.3	±0.5	LSB
EB	effective bits	$ \begin{array}{l} f_i = 4.43 \text{ MHz}; \ I_{ref} = 45 \text{ mA}; \\ f_{clk} = 100 \text{ MHz} \end{array} $	-	7.5	-	bits
		$\label{eq:fi} \begin{array}{l} f_i = 4.43 \text{ MHz}; \ I_{ref} = 45 \text{ mA}; \\ f_{clk} = 100 \text{ MHz} \end{array}$	-	6.5	-	bits
f _{clk(max)}	maximum clock frequency		600	-	-	MHz
P _{tot}	total power dissipation		_	990	1250	mW


ORDERING INFORMATION

TYPE NUMBER	PACKAGE					
	PINS	PIN POSITION	MATERIAL	CODE		
TDA8718K 28		PLCC28	plastic	SOT261-2		

TDA8718


8-bit high-speed analog-to-digital converter

BLOCK DIAGRAM

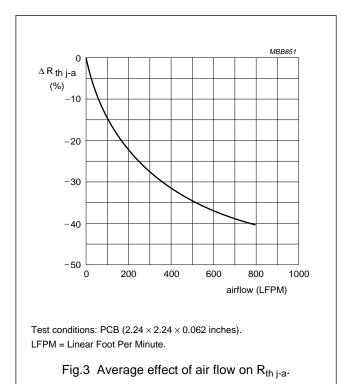
PINNING

SYMB OL	PIN	DESCRIPTION			
V _{RB}	1	reference voltage BOTTOM			
V _{RM}	2	reference voltage MIDDLE decoupling			
VI	3	analog input voltage			
n.c.	4	not connected			
V _{RT}	5	reference voltage TOP			
OF	6	overflow digital output			
n.c.	7	not connected			
CLK	8	clock input			
CLK	9	complementary clock input			
D7	10	digital output; bit 7 (MSB)			
V _{BB}	11	ECL reference voltage			
OGND1	12	output ground 1 (0 V)			
D6	13	digital output; bit 6			
D5	14	digital output; bit 5			
D4	15	digital output; bit 4			
D3	16	digital output; bit 3			
D2	17	digital output; bit 2			
OGND2	18	output ground 2 (0 V)			
D1	19	digital output; bit 1			
D0	20	digital output; bit 0 (LSB)			
UF	21	underflow digital output			
n.c.	22	not connected			
V _{EED}	23	digital supply voltage (-4.5 V)			
DGND	24	digital ground			
n.c.	25	not connected			
n.c.	26	not connected			
AGND	27	analog ground			
V_{EEA}	28	analog supply voltage (-4.5 V)			

TDA8718

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).


SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{EEA}	analog supply voltage (pin 28)		-7.0	+0.3	V
V _{EED}	digital supply voltage (pin 23)		-7.0	+0.3	V
ΔV_{EE}	supply voltage difference between V_{EEA} and V_{EED}		-1.00	+1.0	V
VI	input voltage (pin 3)	referenced to AGND	V _{EEA}	0	V
$\Delta V_{clk(p-p)}$	clock input voltage difference between CLK and CLK pin 8 to pin 9 (peak-to-peak value)	referenced to V _{EED} ; note 1	_	2.0	V
I _O	output current for each digital output		-	30	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		0	+70	°C
Tj	junction temperature		_	+150	°C

Note

1. The circuit has two clock inputs CLK and CLK. Sampling takes place on the falling edge of the clock input signal; CLK and CLK are two complementary signals.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	55	K/W

June 1994

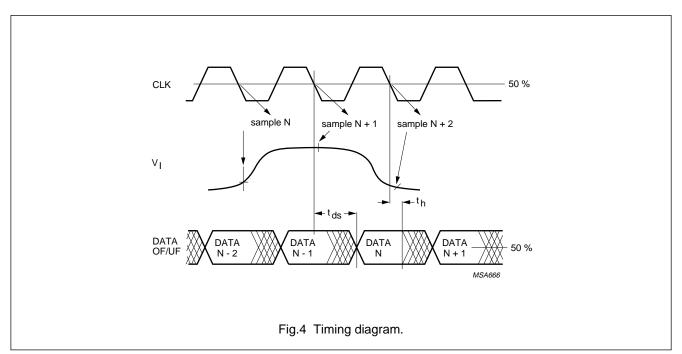
TDA8718

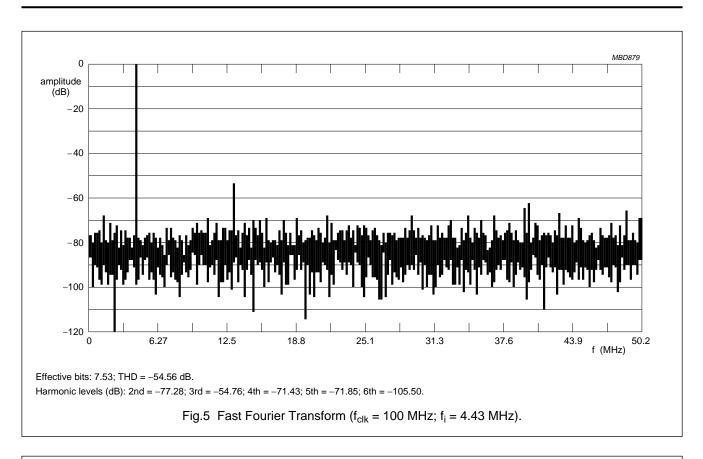
CHARACTERISTICS

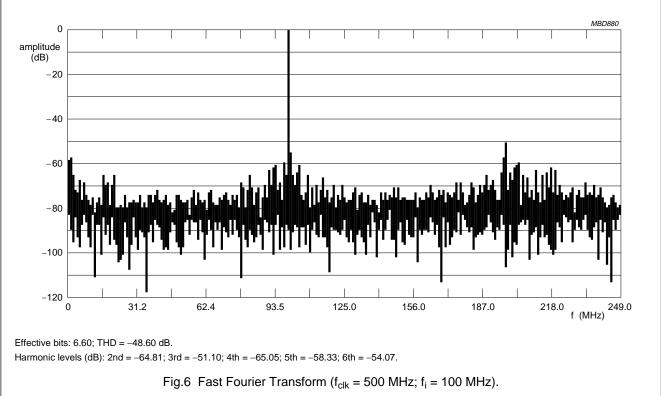
 $V_{EEA} = -4.2$ to -4.8 V; $V_{EED} = -4.2$ to -4.8 V; V_{EEA} to $V_{EED} = -0.1$ to +0.1 V; AGND and DGND shorted together; T_{amb} = 0 to +70 °C; typical values measured at $V_{EEA} = -4.5$ V, $V_{EED} = -4.5$ V and T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply			I			•
V _{EEA}	analog supply voltage (pin 28)		-4.2	-4.5	-4.8	V
V _{EED}	digital supply voltage (pin 23)		-4.2	-4.5	-4.8	V
I _{EEA}	analog supply current (pin 28)		30	42	54	mA
I _{EED}	digital supply current (pin 23)		100	120	150	mA
I _{EEO(L)}	LOW level output supply current	R _L = 50 Ω	40	70	90	mA
I _{EEO(H)}	HIGH level output supply current	R _L = 50 Ω	155	170	185	mA
Reference	voltages for the resistor ladder (se	e Table 1)				•
I _{RT}	reference current (pin 5)	R = 48 Ω	30	45	60	mA
V _{RB}	reference voltage BOTTOM (pin 1)		_	$48~\Omega \times I_{RT}$	_	V
V _{RT}	reference voltage TOP (pin 5)		-	0	-	V
R _{LAD}	resistor ladder		_	48	_	Ω
TC _{RLAD}	temperature coefficient of the resistor ladder		-	175	_	ΜΩ/Κ
V _{osB}	voltage offset BOTTOM	note 1	_	$8 \Omega \times I_{RT}$	_	mV
V _{osT}	voltage offset TOP	note 1	-	$8 \Omega \times I_{RT}$	-	mV
Inputs						1
CLK INPUT	(PIN 8); CLK INPUT (PIN 9)					
VIL	LOW level input voltage		_	-1.8	_	V
VIH	HIGH level input voltage		_	-0.8	_	V
I _{IL}	LOW level input current	V _{clk} = -1.8 V	-	0	-	μA
I _{IH}	HIGH level input current	$V_{clk} = -0.8 V$	_	120	_	μA
R _I	input resistance	f _{clk} = 100 MHz	_	1.5	-	kΩ
Cl	input capacitance	f _{clk} = 100 MHz	_	3.5	-	pF
$\Delta V_{clk(p-p)}$	clock input voltage difference between CLK and CLK pin 8 to pin 9 (peak-to-peak value)		-	900	-	mV
ANALOG INF	PUT (PIN 3); NOTE 2					
IIL	LOW level input current	data output = 00	20	40	80	μA
	HIGH level input current	data output = FF	100	200	400	μA
RI	input resistance		_	10	_	kΩ
Cl	input capacitance		_	5	_	pF

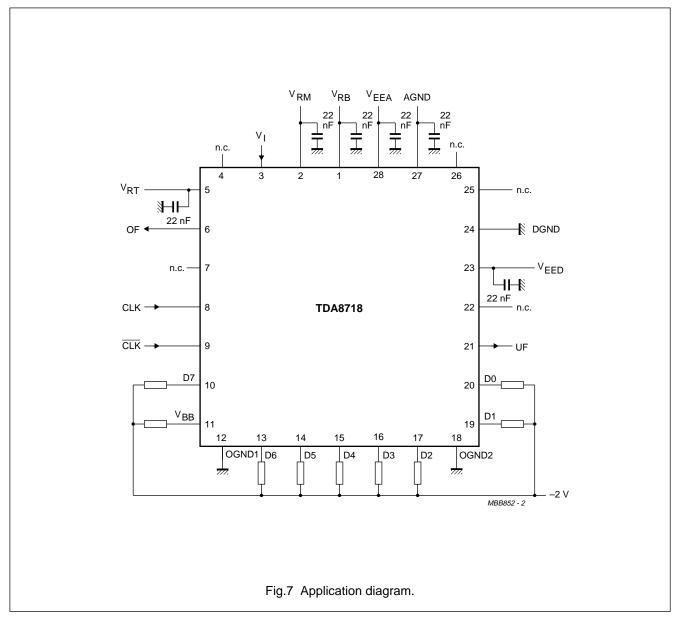
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Outputs (R _L = 50 Ω)		1	-		1
DIGITAL 10	0K ECL OUTPUTS (D0 TO D7; OF; I	JF)				
V _{OL}	LOW level output voltage	Tamb = 25 °C	_	-1770	-1650	mV
V _{OH}	HIGH level output voltage	Tamb = 25 °C	-1300	-1150	_	mV
V _{ECL}	ECL reference voltage		-1550	-1450	-1350	mV
I _{OL}	LOW level output current		4	6	8	mA
I _{OH}	HIGH level output current		10	20	25	mA
Switching	characteristics		-			•
f _{clk(max)}	maximum clock frequency (pins 8 and 9)		600	-	-	MHz
t _r ; t _f	rise and fall times	f _i = 100 MHz	-	_	750	ps
Analog si	gnal processing (f _{clk} = 500 MHz)		•			1
HARMONIC	S (FULL SCALE)					
h ₁	fundamental harmonics	f _i = 100 MHz	_	0	_	dB
h ₂	second harmonics	f _i = 100 MHz	_	-54	_	dB
h ₃	third harmonics	f _i = 100 MHz	_	-50	_	dB
Transfer f	unction				-	-
ILE	DC integral linearity error		-	±0.7	±1.0	LSB
DLE	DC differential linearity error		_	±0.3	±0.5	LSB
AILE	AC integral linearity error	note 3	-	±0.9	±1.5	LSB
EB	effective bits	$\label{eq:fi} \begin{array}{l} f_i = 4.43 \text{ MHz, full scale;} \\ I_{ref} = 45 \text{ mA; note 4;} \\ f_{clk} = 100 \text{ MHz; Fig.5} \end{array}$	-	7.5	-	bits
		$\label{eq:fi} \begin{array}{l} f_i = 100 \text{ MHz}, \text{ full scale}; \\ I_{ref} = 45 \text{ mA}; \text{ note } 4; \\ f_{clk} = 500 \text{ MHz}; \text{ Fig.6} \end{array}$	_	6.5	-	bits
BER	bit error rate	$\begin{array}{l} f_{clk} = 500 \text{ MHz};\\ f_i = 100 \text{ MHz};\\ V_i = \pm 8 \text{ LSB at code}\\ 128; 50\% \text{ clock duty}\\ \text{cycle} \end{array}$	-	10 ⁻¹¹	-	times/ samples
Timing (f _c	_{lk} = 500 MHz; R _L = 50 Ω; C _L = 5 p	F) note 5				
t _{ds}	sampling delay		-	_	300	ps
t _h	output hold time		400	700	-	ps
t _d	output delay time		_	1300	1500	ps

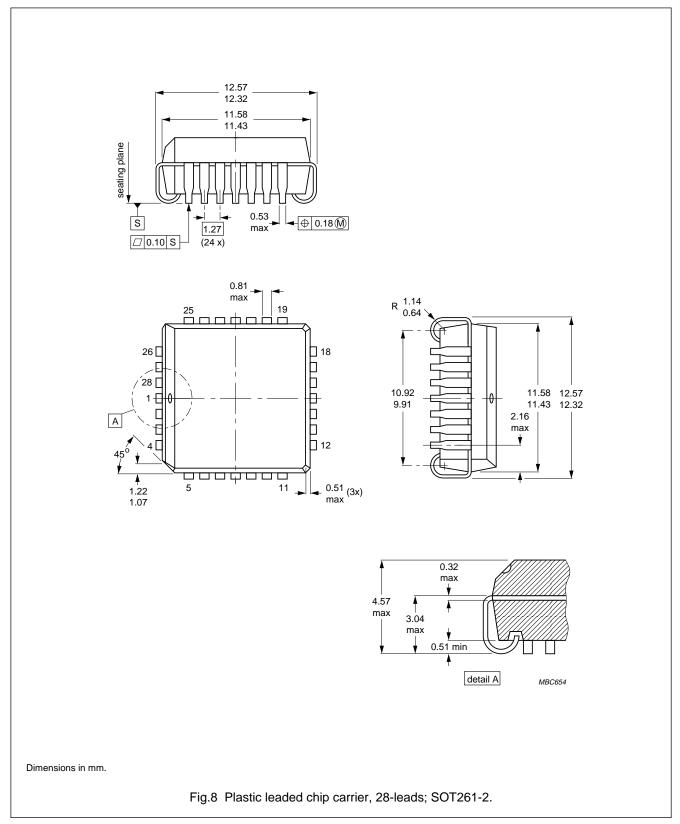

TDA8718


Notes to the "Characteristics"


- 1. Voltage offset BOTTOM (V_{osB}) is the difference between the analog input which produces data outputs equal to 00 and the reference voltage BOTTOM (V_{RB}) at $T_{amb} = 25$ °C. Voltage offset TOP (V_{osT}) is the difference between reference voltage TOP (V_{RT}) and the analog input which produces data outputs equal to FF, at $T_{amb} = 25$ °C.
- 2. The analog input is not internally biased. It should be externally biased between V_{RT} and V_{RB} levels.
- 3. Full-scale sine wave; f_i = 4.43 MHz; f_{clk} = 100 MHz.
- Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 4K acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
- TDA8718 can only withstand one or two 100K ECL loads in order to work out timings at the maximum sampling frequency. It is recommended to minimize the printed circuit-board load by implementing the load device as close as possible to the TDA8718.

етер	VI	O/UF	BINARY OUTPUT BITS					
STEP			D5	D4	D3	D2	D1	D0
Underflow	$<$ -40 $\Omega \times I_{RT}$	1	0	0	0	0	0	0
0	$-40 \ \Omega imes I_{RT}$	0	0	0	0	0	0	0
1		0	0	0	0	0	0	1
			-		-	•	-	
			-		-	•	-	
						•		
254		0	1	1	1	1	1	0
255	$-8 \ \Omega \times I_{RT}$	0	1	1	1	1	1	1
Overflow	$>$ -8 $\Omega \times I_{RT}$	1	1	1	1	1	1	1


 Table 1
 Output coding and input voltage (typical values; referenced to AGND.



APPLICATION INFORMATION

PACKAGE OUTLINE

TDA8718

SOLDERING

Plastic leaded chip carriers

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.