INTEGRATED CIRCUITS

Objective specification File under Integrated Circuits, IC02 1996 Sep 12

FEATURES

- Triple 8-bit ADC
- Sampling rate up to 80 MHz
- IC controllable via a serial interface, which can be either I²C-bus or 3-wire, selected via a TTL input pin
- IC analog voltage input from 0.4 to 1.2 V (p-p) to produce full-scale ADC input of 1 V (p-p)
- 3 clamps for programming a clamping code between -63.5 and +64 in steps of $1\!\!/_2 \text{LSB}$
- 3 controllable amplifiers: gain controlled via the serial interface to produce a full scale resolution of ¹/₂LSB peak-to-peak
- Amplifier bandwidth of 250 MHz
- · Low gain variation with temperature
- PLL, controllable via the serial interface to generate the ADC clock, which can be locked to a line frequency from 15 to 280 kHz
- Integrated PLL divider
- · Programmable phase clock adjustment cells
- Internal voltage regulators
- TTL compatible digital inputs and outputs
- Chip enable high-impedance ADC output
- Power-off mode
- Possibility to use up to four ICs in the same system, using the I²C-bus interface, or more, using the 3-wire serial interface
- 1 W power dissipation.

APPLICATIONS

- R, G and B high speed digitizing
- LCD panels drive
- LCD projection systems
- VGA and higher resolutions
- Using two ICs in parallel, higher display resolution can be obtained; 160 MHz pixel frequency.

BUS

GENERAL DESCRIPTION

The TDA8752 is a triple 8-bit ADC with controllable amplifiers and clamps for the digitizing of large bandwidth RGB signals.

The clamp level, the gain and all of the other settings are controlled via a serial interface (either l^2C -bus or 3-wire serial bus, selected via a logic input). The amplifiers are optimized for stability as a function of temperature variations.

The IC also includes a PLL that can be locked on the horizontal line frequency and generates the ADC clock. The PLL jitter is minimized for high resolution PC graphics applications. An external clock can also be input to the ADC.

It is possible to set the TDA8752 serial bus address between four fixed values, in the event that several TDA8752 ICs are used in a system, using the I²C-bus interface (for example, two ICs used in an odd/even configuration).

ORDERING INFORMATION

TYPE		PACKAGE		SAMPLING
NUMBER	NAME	DESCRIPTION	VERSION	FREQUENCY (MHZ)
TDA8752H/6		plastic quad flat package; 100 leads (lead length 1.95 mm);	SOT217 2	60
TDA8752H/8	QFF100	body $14 \times 20 \times 2.8$ mm	301317-2	80

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA}	analog supply voltage	for R, G and B channels	4.75	5.0	5.25	V
V _{DDD}	logic supply voltage	for I ² C-bus and 3-wire	4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{cco}	output stages supply voltage	for R, G and B channels	4.75	5.0	5.25	V
V _{CCA(PLL)}	analog PLL supply voltage		4.75	5.0	5.25	V
V _{CCO(PLL)}	output PLL supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current		-	120	_	mA
I _{DDD}	logic supply current	for I ² C-bus and 3-wire	-	1.0	-	mA
I _{CCD}	digital supply current		-	40	-	mA
I _{CCO}	output stages supply current	f _{clk} = 80 MHz; ramp input	-	6	_	mA
I _{CCA(PLL)}	analog PLL supply current		-	28	-	mA
I _{CCO(PLL)}	output PLL supply current		-	5	-	mA
f _{CLK}	maximum clock frequency	TDA8752/6	60	-	_	MHz
		TDA8752/8	80	-	-	MHz
f _{ref(PLL)}	PLL reference clock frequency		15	-	280	kHz
f _{VCO}	VCO output clock frequency		12	-	80	MHz
INL	DC integral non linearity	full-scale; ramp input; f _{clk} = 80 MHz	-	±0.5	tbf	LSB
DNL	DC differential non linearity	full-scale; ramp input; f _{clk} = 80 MHz	-	±0.5	tbf	LSB
$\Delta G_{amp}/T$	amplifier gain stability as a function of temperature	V _{ref} = 2.5 V with 100 ppm/°C maximum	-	_	200	ppm/°C
В	amplifier bandwidth	−3 dB; T _{amb} = 25 °C	250	_	_	MHz
t _{set}	settling time of the ADC block plus AGC	input signal settling time < 1 ns; T _{amb} = 25 °C	-	-	6	ns
JPLL(rms)	maximum PLL phase jitter (RMS value)		-	0.2	-	ns
DR _{PLL}	PLL divider ratio	without divide-by-2	15	-	2047	
P _{tot}	total power consumption	f _{CLK} = 80 MHz; ramp input	_	1.0	tbf	W

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION		
n.c.	1	not connected		
DEC2	2	main regulator decoupling input		
V _{ref}	3	gain stabilizer voltage reference input		
DEC1	4	main regulator decoupling input		
n.c.	5	not connected		
RAGC	6	red channel AGC output		
RBOT	7	red channel ladder decoupling input (BOT)		
RGAINC	8	red channel gain capacitor input		
RCLP	9	red channel gain clamp capacitor input		
RDEC	10	red channel gain regulator decoupling input		
V _{CCAR}	11	red channel gain analog power supply		
RIN	12	red channel gain analog input		
AGNDR	13	red channel gain analog ground		
GAGC	14	green channel AGC output		
GBOT	15	green channel ladder decoupling input (BOT)		
GGAINC	16	green channel gain capacitor input		
GCLP	17	green channel gain clamp capacitor input		
GDEC	18	green channel gain regulator decoupling input		
V _{CCAG}	19	green channel gain analog power supply		
GIN	20	green channel gain analog input		
AGNDG	21	green channel gain analog ground		
BAGC	22	blue channel AGC output		
BBOT	23	blue channel ladder decoupling input (BOT)		
BGAINC	24	blue channel gain capacitor input		
BCLP	25	blue channel gain clamp capacitor input		
BDEC	26	blue channel gain regulator decoupling input		
V _{CCAB}	27	blue channel gain analog power supply		
BIN	28	blue channel gain analog input		
AGNDB	29	blue channel gain analog ground		
n.c.	30	not connected		
n.c.	31	not connected		
I ² C/3W	32	selection input between I ² C-bus (active LOW) and 3-wire serial bus (active HIGH)		
ADD2	33	I ² C-bus address control input 2		
ADD1	34	I ² C-bus address control input 1		
тск	35	scan test mode (active HIGH)		

SYMBOL	PIN	DESCRIPTION
TDO	36	scan test output
DIS	37	I ² C/3W disable control input
SEN	38	select enable for 3-wire serial bus input
SDA	39	I ² C/3W serial data input
V _{DDD}	40	logic I ² C/3W digital power supply
V _{SSD}	41	logic I ² C/3W digital ground
SCL	42	I ² C/3W serial clock input
n.c.	43	not connected
n.c.	44	not connected
n.c.	45	not connected
n.c.	46	not connected
n.c.	47	not connected
OGNDB	48	blue channel ADC output ground
B0	49	blue channel ADC output bit 0 (LSB)
n.c.	50	not connected
n.c.	51	not connected
B1	52	blue channel ADC output bit 1
B2	53	blue channel ADC output bit 2
B3	54	blue channel ADC output bit 3
B4	55	blue channel ADC output bit 4
B5	56	blue channel ADC output bit 5
B6	57	blue channel ADC output bit 6
B7	58	blue channel ADC output bit 7 (MSB)
V _{CCOB}	59	blue channel ADC output power supply
OGNDG	60	green channel ADC output ground
G0	61	green channel ADC output bit 0 (LSB)
G1	62	green channel ADC output bit 1
G2	63	green channel ADC output bit 2
G3	64	green channel ADC output bit 3
G4	65	green channel ADC output bit 4
G5	66	green channel ADC output bit 5
G6	67	green channel ADC output bit 6
G7	68	green channel ADC output bit 7 (MSB)
V _{CCOG}	69	green channel ADC output power supply
OGNDR	70	red channel ADC output ground
R0	71	red channel ADC output bit 0 (LSB)

SYMBOL	PIN	DESCRIPTION
R1	72	red channel ADC output bit 1
R2	73	red channel ADC output bit 2
R3	74	red channel ADC output bit 3
R4	75	red channel ADC output bit 4
R5	76	red channel ADC output bit 5
R6	77	red channel ADC output bit 6
R7	78	red channel ADC output bit 7 (MSB)
V _{CCOR}	79	red channel ADC output power supply
n.c.	80	not connected
n.c.	81	not connected
OGNDPLL	82	PLL digital ground
CKBOUT	83	PLL clock output 2
CKAOUT	84	PLL clock output 1 (in phase with internal ADC clock)
V _{CCO(PLL)}	85	PLL output power supply
DGND	86	digital ground
ŌĒ	87	output enable not (when \overline{OE} is HIGH, the outputs are in high-impedance)
PWOFF	88	power off control input (IC is in power off mode when this pin is HIGH)
CLP	89	clamp pulse input
HSYNC	90	horizontal synchronization input pulse
INV	91	PLL clock output inverter command input
CKEXT	92	external clock input
COAST	93	PLL coast command input
CKREF	94	PLL reference clock input
V _{CCD}	95	digital power supply
AGNDPLL	96	PLL analog ground
СР	97	PLL filter input
CZ	98	PLL filter input
V _{CCAPLL}	99	PLL analog power supply
n.c.	100	not connected

FUNCTIONAL DESCRIPTION

This triple high-speed 8-bit ADC is designed to convert RGB signals, from a PC or work station, into data used by a LCD driver (pixel clock up to 160 MHz, using 2 ICs).

IC analog video inputs

The video inputs are internally DC polarized. These inputs are AC coupled externally.

Clamps

Three independent parallel clamping circuits are used to clamp the video input signals on the black level and to control the contrast level. The clamping code is programmable between code –63.5 and +64 in steps of $1/_2$ LSB. The programming of the clamp value is achieved via an 8-bit DAC. Each clamp must be able to correct an offset from ±0.1 V to ±10 mV within 300 ns, and correct the total offset in 10 lines.

The clamps are controlled by an external TTL positive going pulse (pin CLP). The drop of the video signal is < 1 LSB.

Normally, the circuit operates with a 0 code clamp, corresponding to the 0 ADC code. This clamp code can be changed from -63,5 to +64 as represented in Fig.5, in steps of $1/_2$ LSB. The digitized video signal is always between code 0 and code 255 of the ADC.

Variable gain amplifier

Three independent variable gain amplifiers are used to provide, to each channel, a full-scale input range signal to the 8-bit ADC. The gain adjustment range is designed so that, for an input range varying from 0.4 to 1.2 V (p-p), the output signal corresponds to the ADC full-scale input of 1 V (p-p).

To ensure that the gain does not vary over the whole operating temperature range, an external reference of +2.5 V DC, (V_{ref} with a 100 ppm/°C maximum variation) supplied externally, is used to calibrate the gain at the beginning of each video line before the clamp pulse using the following principle:

A differential of 0.156 V (p-p) ($\frac{1}{16}$ V_{ref}) reference signal is generated internally from the reference voltage (V_{ref}). During the synchronization part of the video line, the multiplexer, controlled by the TTL synchronization signal (HSYNCI, coming from HSYNC; see Fig.1) with a width equal to one of the video synchronization signals (e.g. signal coming from a synchronization separator), is switched between the two amplifiers. The output of the multiplexer is either the normal video signal or the 0.156 V reference signal (during HSYNC).

The corresponding ADC outputs are then compared to a pre-set value loaded in a register. Depending on the result of the comparison, the gain of the variable gain amplifiers is adjusted (coarse gain control; see Figs 1 and 6). The three 7-bit registers receive data via a serial interface to enable the gain to be programmed.

The pre-set value loaded in the 7-bit register is chosen between approximately 67 codes to ensure the full-scale input range (see Fig.6).

A fine correction using three 5-bit DACs, also controlled via the serial interface, is used to finely tune the gain of the three channels (fine gain control; see Figs 1 and 7) and to compensate the channel-to-channel gain mismatch.

With a full scale ADC input, the resolution of the fine register corresponds to $\frac{1}{2}$ LSB peak-to-peak variation.

To use these gain controls correctly, it is recommended to fix the coarse gain (to have a full-scale ADC input signal) to within 4LSB and then adjust it with the fine gain. The gain is adjusted during HSYNC. During this time the output signal is not related to the amplified input signal. The outputs, when the coarse gain system is stable, is related to the programmed coarse code (see Fig.6).

ADCs

The ADCs are 8-bit with a maximum clock frequency of 80 Msps. The ADCs input range is 1 V (p-p) full-scale.

Pipeline delay in the ADCs is 1.5 clock cycles from sampling to data output.

The ADCs reference ladders regulators are integrated.

ADC outputs

ADC outputs are straight binary. An output enable pin $(\overline{OE}; \text{ active LOW})$ enables the output status between active and high-impedance ($\overline{OE} = HIGH$) to be switched; it is recommended to load the outputs with a 10 pF capacitive load. The timing must be checked very carefully if the capacitive load is more than 10 pF.

Phase-locked loop

The ADCs are clocked either by an internal PLL locked to the CKREF clock, (all of the PLL is on-chip except the loop filter capacitance) or an external clock, CKEXT. Selection is performed via the serial interface bus.

The reference clock (CKREF) range is between 15 and 280 kHz. Consequently, the VCO minimum frequency is 12 MHz and the maximum frequency 80 MHz for the TDA8752/8 and 60 MHz for the TDA8752/6. The gain of the VCO part can be controlled via the serial interface, depending on the frequency range to which the PLL is locked.

To increase the bandwidth of the PLL, the charge pump current, controlled by the serial interface, must also be increased. The relationship between the bandwidth and the current is given by the following equation:

$$W_{n} = \sqrt{\frac{K_{O}I_{P}}{(C_{z} + C_{P})N}}$$

Where:

 W_n = the natural PLL bandwidth.

 K_0 = the VCO gain.

N = the division number.

 C_z and C_P = capacitors of the PLL filter.

The other PLL equation is as follows:

$$W_z = \frac{1}{R \times C_z} \text{ and } \left(\xi = \frac{1}{2} \times \frac{W_n}{W_z} \right)$$

Where:

 W_z = the natural VCO frequency.

R = the chosen resistance for the filter.

 ξ = the damping factor.

Different resistances for the filter can be programmed via the serial interface.

It is possible to control (independently) the phase of the ADC clock and the phase of an additional clock output (which could be used to drive a second TDA8752). For this, two serial interface-controlled digital phase-shift controllers are included (controlled by 5-bit registers, phase shift controller steps are 11.25° each on the whole PLL frequency range).

The COAST pin is used to disconnect the PLL phase frequency detector during the frame flyback or the unavailability of the CKREF signal. This signal can normally be derived from the VSYNC signal. TDA8752

The clock output is able to drive an external 10 pF load (for the on-chip ADCs).

The PLL can be used in three different methods:

- The IC can be used as stand-alone with a sampling frequency of up to 80 MHz. for the TDA8752/8 and 60 MHz for the TDA8752/6
- 2. When an RGB signal is at a pixel frequency of 80 MHz, it is impossible to sample it in a standard way, using the IC stand-alone (as before). Two possibilities exist to solve this problem;
 - a) The PLL clock output inverter (INV) command is used for each frame where the phase has shifted by 180°. Consequently, during a frame, either the even pixels or the odd pixels are sampled.
 - b) The other method is to use two TDA8752s: the PLL of the first TDA8752 is used to drive both chip ADCs. The PLL of the second TDA8752 is disconnected and the CKBOUT of the first TDA8752 is connected to pin CKEXT of the second TDA8752. The CKAOUT and CKBOUT phases are adjustable via the phase selector of the first TDA8752 or INV pin. Thus the sampling on the first TDA8752 occurs on the rising edge of the PLL clock, while the sampling on the second TDA8752 occurs on the falling edge of the same clock. The data of the first IC is then multiplexed at a frequency clock of 160 MHz with the data of the second IC (if TDA8752/8 is used).

I²C-bus and 3-wire serial bus interface

The I²C-bus and 3-wire serial buses control the status of the different control DACs and registers. Control pin DIS enables or disables the full serial interface function. Four ICs can be used in the same system and programmed by the same bus. Therefore, two pins (ADD1 and ADD2) are available to set each address respectively, for use with the I²C-bus interface. All programming is described in Chapter "I²C-bus and 3-wire interfaces".

1²C-BUS AND 3-WIRE INTERFACES 1996 Sep 12

Register definitions

The configuration of the different registers is as follows:

Table 1 I²C-bus and 3-wire registers

FUNCTION				SUBAD	DRESS							3IT DEF					DEFAULT
NAME	A7	A6	A5	A4	A3	A2	A1	A0	MSB							LSB	VALUE
SUBADDR	I	I	I	I	I	I	I	I	×	×	×	Mode	Sa3	Sa2	Sa1	Sa0	xxx1 0000
OFFSETR	×	×	×	×	0	0	0	0	Or7	Or6	Or5	Or4	Or3	Or2	or1	OrO	0111 1111
COARSER	×	×	×	×	0	0	0	-	×	Cr6	Cr5	Cr4	Cr3	Cr2	Cr1	CrO	x010 0000
FINER	×	×	×	×	0	0	-	0	×	×	×	Fr4	Fr3	Fr2	Fr1	FrO	XXX0 0000
OFFSETG	×	×	×	×	0	0	-	-	Og7	Og6	Og5	Og4	Og3	Og2	Og1	0g0	0111 1111
COARSEG	×	×	×	×	0	-	0	0	×	Cg6	Cg5	Cg4	Cg3	Cg2	Cg1	Cg0	x010 0000
FINEG	×	×	×	×	0	-	0	-	×	×	×	Fg4	Fg3	Fg2	Fg1	Fg0	XXX0 0000
OFFSETB	×	×	×	×	0	-	-	0	Ob7	Ob6	Ob5	Ob4	Ob3	Ob2	Ob1	Ob0	0111 1111
COARSEB	×	×	×	×	0	-	-	-	×	Cb6	Cb5	Cb4	Cb3	Cb2	Cb1	Cb0	x010 0000
FINEB	×	×	×	×	-	0	0	0	×	×	×	Fb4	Fb3	Fb2	Fb1	Fb0	xxx0 0000
CONTROL	×	×	×	×	~	0	0	~	Vlevel	Hlevel	edge	ЧÞ	Do	lp2	lp1	lp0	0000 0100
VCO	×	×	×	×	-	0	-	0	Z2	Z1	Z0	Vco1	Vco0	Di10	Di9	Di8	0110 0001
DIVIDER (LSB)	×	×	×	×		0	-	-	Di7	Di6	Di5	Di4	Di3	Di2	Di1	DiO	1001 0000
PHASEA	×	×	×	×	-	-	0	0	×	×	Cka	Pa4	Pa3	Pa2	Pa1	Pa0	xx00 0000
PHASEB	×	×	×	×	-	-	0	-	×	×	Ckb	Pb4	Pb3	Pb2	Pb1	Pb0	xx00 0000

All the registers are defined by a subaddress of 7 bits; bit A4 refers to the mode which is used with the I²C-bus interface; bits Sa3 to Sa0 are the subaddress of each register.

The bit mode, used only with the I²C-bus, enables two modes to be programmed:

- If Mode = 0, each register is programmed independently by giving its subaddress and its content.
- If Mode = 1, all the registers are programmed one after the other by giving this initial condition (xxx1 1111) as the subaddress state; thus, the registers are charged following the predefined sequence of 16 bytes (from subaddress 0000 to 1101)

TDA8752

Triple high speed Analog-to-Digital

Converter (ADC) for LCD drive

OFFSET REGISTER

This register controls the clamp level for the RGB channels. The relationship between the programming code and the level of the clamp code is given in Table 2.

Table 2 Coding

PROGRAMMED CODE	CLAMP CODE	ADC OUTPUT
0	-63.5	underflow
1	-63	
2	-62.5	
\downarrow	\downarrow	
127	0	0
\downarrow	\downarrow	\downarrow
254	63.5	63 or 64
255	64	64

The default programmed value is:

- Programmed code = 127
- Clamp code = 0
- ADC output = 0.

COARSE AND FINE REGISTERS

These two registers enable the gain control, the AGC gain with the coarse register and the reference voltage with the fine register. The coarse register programming equation is as follows:

$$\begin{split} \text{GAIN} &= \frac{N_{\text{COARSE}} + 1}{V_{\text{ref}} \Big(1 - \frac{N_{\text{FINE}}}{32 \times 16} \Big)} \times \frac{1}{16} = \\ \frac{N_{\text{COARSE}} + 1}{V_{\text{ref}} \left(512 - N_{\text{FINE}} \right)} \times 32 \end{split}$$

Where; $V_{ref} = 2.5 V$.

The gain correspondence is given in Table 3. The gain is linear with reference to the programming code ($N_{FINE} = 0$).

 Table 3
 Gain correspondence (COARSE)

N _{COARSE}	GAIN	V _i TO BE FULL-SCALE
32	0.825	1.212
99	2.5	0.4

The default programmed value is as follows:

- N_{COARSE} = 32
- Gain = 0.825
- V_i to be full-scale = 1.212.

To modulate this gain, the fine register is programmed using the above equation. With a full-scale ADC input, the fine register resolution is a $1/_2$ LSB peak-to-peak (see Table 4 for N_{COARSE} = 32).

Table 4 Gain correspondence (Figure 1)	FINE)
---	-------

N _{FINE}	GAIN	V _i TO BE FULL-SCALE
0	0.825	1.212
31	0.878	1.139

The default programmed value is: $N_{FINE} = 0$.

CONTROL REGISTER

The VGA signal can have two different polarities for the vertical synchronisation pulse and for the horizontal synchronization pulse. The bits Vlevel and Hlevel enable the polarity to be programmed (the polarity is positive when the bit is equal to logic 0).

The bits Up and Do are used for the test, to force the charge pump current. These bits have to be logic 0 during normal use.

The bits Ip0, Ip1 and Ip2 control the charge pump current, to increase the bandwidth of the PLL, as shown in Table 5.

Table 5 Charge-pump current control

lp2	lp1	lp0	CURRENT (μΑ)
0	0	0	6.25
0	0	1	12.5
0	1	0	25
0	1	1	50
1	0	0	100
1	0	1	200
1	1	0	400
1	1	1	800

Objective specification

Triple high speed Analog-to-Digital Converter (ADC) for LCD drive

The default programmed value is as follows:

- Charge pump current = $100 \ \mu A$
- Test bits: no test mode: 0 and 0
- Polarity: positive for VSYNC and HSYNC: 0 and 0.

VCO REGISTER

The bits Z2, Z1 and Z0 enable the internal resistance for the VCO filter to be selected.

Table 6 VCO register bits

Z2	Z1	ZO	RESISTANCE (kΩ)
0	0	0	high impedance
0	0	1	128
0	1	0	32
0	1	1	16
1	0	0	8
1	0	1	4
1	1	0	2
1	1	1	1

Table 7 VCO gain control

V _{CO1}	V _{CO0}	VCO gain (MHz/V)
0	0	15
0	1	30
1	0	60
1	1	100

Table 8 Phase registers bits

PA4, PB4	PA3, PB3	PA2, PB2	PA1, PB1	PA0, PB0	PHASE SHIFT (°)
0	0	0	0	0	0
0	0	0	0	1	11.25
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	1	1	1	0	348.75
1	1	1	1	1	360

The default programmed value is as follows:

- No external clock = 0
- No use of the second clock = 0
- Phase shift for CKAOUT = 0°
- Phase shift for CKBOUT = 0° .

1996 Sep 12

The bits V_{CO1} and V_{CO0} control the VCO gain.

The default programmed value is as follows:

- Internal resistance = 16 k Ω
- VCO gain = 15 MHz/V.

DIVIDER REGISTER

This register controls the PLL frequency. The bits are the LSB bits.

The default programmed value is; divide-by 001 1001 0000 = 800 (binary)

The MSB bits (Di10, Di9 and Di8) have to be programmed before the LSB bits (Di7 to Di0) to have the required divider ratio.

PHASEA AND PHASEB REGISTERS

The bit Cka is logic 0 when the used clock is the PLL clock, and logic 1 when the used clock is the external clock.

The bit Ckb is logic 0 when the second clock is not used.

The bits Pa4 to Pa0 and Pb4 to Pb0 are used to program the phase shift for the clock, CKAOUT and CKBOUT (see Table 8).

TDA8752

I²C-bus protocol

Table 9 I²C-bus address

A7	A6	A5	A4	A3	A2	A1	A0
1	0	0	1	1	ADD2	ADD1	0

The I2C-bus address of the circuit is 10011 xx0.

Bits A2 and A1 are fixed by the potential on pins ADD1 and ADD2. Thus, four TDA8752s can be used on the same system, using the addresses for ADD1 and ADD2 with the I²C-bus. The A0 bit must always be equal to logic 0 because it is not possible to read the data in the register. The timing and protocol for the I²C-bus are standard. Two sequences are available, see Tables 10 and 11.

Table 10 Address sequence for mode 0

S	IC ADDRESS	ACK	SUBADDRESS	ACK	DATA	ACK	SUBADDRESS	ACK	 Р
			REGISTER1		REGISTER1		REGISTER2		
					(see Table 1)				

Where:

S = START condition.

ACK = acknowledge.

P = STOP condition.

Table 11 Address sequence for mode 1

S	IC ADDRESS	ACK	SUBADDRESS	ACK	DATA	ACK	DATA	ACK	 Р
			xxx1 1111		REGISTER1		REGISTER2		
					(see Table 1)				

Where:

S = START condition.

ACK = acknowledge.

P = STOP condition.

3-wire protocol

For the 3-wire serial bus the first byte refers to the register address which is programmed. The second byte refers to the data to be sent to the chosen register (see Table 1). The acquisition is achieved via SEN.

Using the 3-wire interface, an indefinite number of ICs can operate on the same system. Pin SEN is used to validate the circuits.

Triple high speed Analog-to-Digital Converter (ADC) for LCD drive

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CCA}	analog supply voltage		-0.3	+7.0	V
V _{CCD}	digital supply voltage		-0.3	+7.0	V
V _{DDD}	logic input voltage		-0.3	+7.0	V
V _{cco}	output stages supply voltage		-0.3	+7.0	V
ΔV_{CC}	supply voltage differences				
	V _{CCA} – V _{CCD}		-1.0	+1.0	V
	$V_{CCO} - V_{CCD}, V_{CCO} - V_{DDD}$		-1.0	+1.0	V
	$V_{CCA} - V_{DDD}, V_{CCD} - V_{DDD}$		-1.0	+1.0	V
	V _{CCA} – V _{CCO}		-1.0	+1.0	V
V _{i(RGB)}	RGB input voltage range	referenced to AGND	-0.3	+7.0	V
lo	output current		-	10	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		0	70	°C
Tj	junction temperature		_	150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	in free air	52	K/W

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

CHARACTERISTICS

 V_{CCA} = V11 (or V19, V27 or V99) referenced to AGND (V13, V21, V29 or V96 = 4.75 to 5.25 V; V_{CCD} = V95 referenced to DGND (V86) = 4.75 to 5.25 V; V_{DDD} = V40 referenced to V_{SSD} (V41) = 4.75 to 5.25 V; V_{CCO} = V59 (or V69, V79 or V85) referenced to OGND (V48, V60, V70 or V82) = 4.75 to 5.25 V; AGND, DGND, OGND and V_{SSD} shorted together. $T_{amb} = 0$ to 70 °C; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5$ V and $T_{amb} = 25$ °C, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies	•	•				
V _{CCA}	analog supply voltage		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{DDD}	logic supply voltage		4.75	5.0	5.25	V
V _{CCO}	output stages supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current		-	120	-	mA
I _{DDD}	logic supply current	for I ² C-bus and 3-wire	-	1.0	-	mA
I _{CCD}	digital supply current		-	40	-	mA
I _{CCO}	output stages supply current	ramp input; f _{clk} = 80 MHz	-	6	-	mA
I _{CCO(PLL)}	output PLL supply current		-	5	-	mA
I _{CCA(PLL)}	analog PLL supply current		-	28	-	mA
ΔV _{CC}	supply voltage differences					
	V _{CCA} –V _{CCD}		-0.25	-	+0.25	V
	$V_{CCO} - V_{CCD}, V_{CCO} - V_{DDD}$		-0.25	-	+0.25	V
	$V_{CCA} - V_{DDD}, V_{CCD} - V_{DDD}$		-0.25	-	+0.25	V
	V _{CCA} – V _{CCO}		-0.25	-	+0.25	V
R, G and B a	mplifiers					
В	bandwidth	−3 dB; T _{amb} = 25 °C	250	-	-	MHz
t _{set}	settling time of the block ADC plus AGC	full-scale (black-to-white) transition; input signal settling time < 1 ns; T _{amb} = 25 °C	-	-	6	ns
G _{COARSE}	coarse gain range	V _{ref} = 2.5 V; minimum coarse gain register; code = 32; (see Fig.5)	-	-	-1.67	dB
		maximum coarse gain register; code = 99; (see Fig.5)	8	-	-	dB
G _{FINE}	fine gain correction	fine register input code = 0	-	-	0	dB
		fine register input code = 31	-0.5	_	_	dB
$\Delta G_{amp}/T$	amplifier gain stability as a function of temperature	V _{ref} = 2.5 V has 100 ppm/°C maximum variation	-	-	200	ppm/°C
I _{ADC}	ADC output current		-	±20	-	μA

1996 Sep 12

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{stab}	amplifier gain adjustment speed	HSYNC active; capacitors on pins 8, 16 and 24 = 22 nF	_	25	-	mdB/µs
V _{i (p-p)}	input voltage range (peak-to-peak value)	corresponding to full-scale output	0.4	-	1.2	V
t _{r(Vi)}	input voltage rise time	f _i = 80 MHz; square wave	_	-	1	ns
t _{f(Vi)}	input voltage fall time	f _i = 80 MHz; square wave	-	-	1	ns
G _E	channel-to-channel gain matching	T _{amb} = 25 °C	-1	_	+1	LSB
Clamps						
P _{CLP}	precision	black level noise on RGB channels = 10 mV (max.) (RMS value); T _{amb} = 25 °C	-1	-	+1	LSB
t _{COR1}	clamp correction time to within $\pm 10 \text{ mV}$	±100 mV black level input variation	_	_	300	ns
t _{COR2}	clamp correction time to less than 1 LSB	±100 mV black level input variation	_	_	10	lines
t _{W(CLP)}	clamp pulse width		500	-	2000	ns
CLP _E	channel-to-channel clamp matching		-1	-	+1	LSB
A _{off}	code clamp reference	clamp register input code = 0	-	-63.5	-	LSB
		clamp register input code = 255	-	64	-	LSB
Phase-locked	Гоор					
JPLL(rms)	maximum PLL jitter (RMS value)		_	0.2	tbf	ns
DR	divider ratio		15	-	2047	
f _{ref}	reference clock frequency range		15	-	280	kHz
f _{PLL}	output clock frequency range		12	-	80	MHz
t _{COASTmax}	maximum coast mode time		_	-	40	lines
t _{recap}	PLL recapture time	when coast mode is aborted	_	3	-	lines
t _{cap}	PLL capture time	in start-up conditions	_	_	5	ms
Φ_{step}	phase shift step	T _{amb} = 25 °C	_	11.25	-	deg

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ADCs			-	-1	1	1
f _s	maximum sampling frequency	TDA8752/6	60	-	-	MHz
		TDA8752/8	80	-	-	MHz
INL	DC integral non linearity	from IC analog input to digital output; ramp input; f _{clk} = 80 MHz	-	±0.5	tbf	LSB
DNL	DC differential non linearity	from IC analog input to digital output; ramp input; f _{clk} = 80 MHz	-	±0.5	tbf	LSB
ENOB	effective number of bits	from IC analog input to digital output; 10 kHz sine wave input; ramp input; $f_{clk} = 60$ MHz; note 1	_	tbf	-	bits
		from IC analog input to digital output; 10 kHz sine wave input; ramp input; f _{clk} = 80 MHz; note 1	_	7	_	bits
t _s	settling time	full scale black-to-white transition	_	-	6	ns
Clock timing	output (CKAOUT and CKBOU	Г)				
η_{ext}	ADC clock duty cycle		47.5	50	52.5	%
f _{CLK(max)}	maximum clock frequency		80	-	-	MHz
Clock timing	input (CKAOUT and CKBOUT)					
f _{CLK(max)}	maximum clock frequency		80	-	-	MHz
t _{CPH}	clock pulse width HIGH		5.7	-	-	ns
t _{CPL}	clock pulse width LOW		5.7	_	-	ns
Data timing (s	see Fig.9); fclk = 80 MHz; CL =	10 pF; note 2				
t _{s(d)}	sampling delay time		-	_	tbf	
t _{o(d)}	output delay time		-	2.5	5	ns
t _{o(h)}	output hold time		8	10	tbf	ns
3-state outpu	t delay time; (see Fig.10)			ł		1
t _{dZH}	output enable HIGH		-	tbf	-	ns
t _{dZL}	output enable LOW		-	tbf	-	ns
t _{dHZ}	output disable HIGH		-	tbf	-	ns
t _{dLZ}	output disable LOW		-	tbf	-	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
TTL outputs;	ADC data outputs and CKOUT	PLL output		- I		ł
V _{OL}	LOW level output voltage		_	-	0.8	V
V _{OH}	HIGH level output voltage		2.3	_	-	V
I _{OL}	LOW level output current		_	tbf	-	mA
I _{OH}	HIGH level output current		_	tbf	-	mA
C _{o(L)}	output capacitive load		-	10	-	pF
TTL digital in	puts (CKREF, COAST, CKEXT,	INV, HSYNC and CLP)				1
V _{IL}	LOW level input voltage		_	-	0.8	V
V _{IH}	HIGH level input voltage		2.0	_	-	V
IIL	LOW level input current		_	tbf	-	mA
I _{IH}	HIGH level input current		_	tbf	-	mA
3-wire serial I	bus			-	-	•
t _{reset}	reset time of the chip before 3-wire communication		-	600	-	ns
t _{su}	data set-up time		-	100	-	ns
t _h	data hold time		-	100	-	ns
l ² C-bus; (see	note 3)		ł	ł		1
f _{SCL}	clock frequency		0	_	100	kHz
t _{BUF}	time the bus must be free before new transmission can start		4.7	-	-	μs
t _{HD;STA}	start condition hold time		4.0	_	-	μs
t _{SU;STA}	start condition set-up time	repeated start	4.7	-	-	μs
t _{CKL}	LOW level clock period		4.7	-	-	μs
t _{СКН}	HIGH level clock period		4.0	-	-	μs
t _{SU;DAT}	data set-up time		250	-	-	ns
t _{HD;DAT}	data hold time		tbf	-	-	ns
t _r	SDA and SCL rise time	for f _{SCL} = 100 kHz	_	-	1.0	μs
t _f	SDA and SCL fall time	for f _{SCL} = 100 kHz	_	-	300	ns
t _{SU;STOP}	stop condition set-up time		4.0	-	-	μs
C _{L(bus)}	capacitive load for each bus line		-	-	400	pF

Notes to the characteristics

- Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8 K acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half clock frequency (NYQUIST frequency). Conversion-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
- 2. Output data acquisition is available after the maximum delay time t_d. All the timings are given for a 10 pF capacitive load.
- The I²C-bus timings are given for a frequency of 100 kbit/s (100 kHz). This bus can be used at a frequency of 400 kbit/s (400 kHz).

TDA8752

Table 12 Test conditions for Fig.10

TEST	SWITCH S1
t _{dLZ}	V _{CCD}
t _{dZl}	V _{CCD}
t _{dHZ}	GND
t _{dZH}	GND

APPLICATION INFORMATION

Fig.11 Application diagram.

PACKAGE OUTLINE

QFP100: plastic quad flat package; 100 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm SOT317-2

TDA8752

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397 750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.