INTEGRATED CIRCUITS

DATA SHEET

TDA8761A 9-bit analog-to-digital converter for digital video

Preliminary specification
File under Integrated Circuits, IC02

TDA8761A

FEATURES

- · 9-bit resolution
- · Sampling rate up to 40 MHz
- · DC sampling allowed
- One clock cycle conversion only
- High signal-to-noise ratio over a large analog input frequency range (8.2 effective bits at 10 MHz full-scale input at f_{clk} = 30 MHz)
- · No missing codes guaranteed
- In range (IR) CMOS output
- · CMOS compatible digital inputs
- 3 to 5 V CMOS digital outputs
- Low-level AC clock input signal allowed
- · External reference voltage regulator
- Power dissipation only 165 mW (typical)
- Low analog input capacitance, no buffer amplifier required
- · No sample-and-hold circuit required.

APPLICATIONS

Analog-to-digital conversion for:

- · Video data digitizing
- Digital Video Broadcasting (DVB)
- · Cable TV.

GENERAL DESCRIPTION

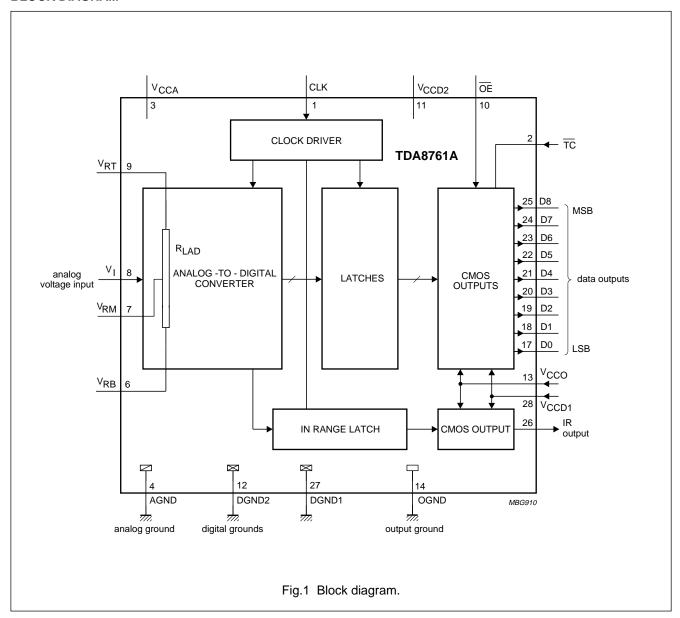
The TDA8761A is a 9-bit analog-to-digital converter (ADC) for professional video and digital video set box applications. It converts the analog input signal into 9-bit binary-coded digital words at a maximum sampling rate of 40 MHz. Its linearity performance ensures the required conversion accuracy in the event of 256QAM demodulator concept and for all symbol frequencies. All digital inputs and outputs are CMOS compatible, although a low-level sine wave clock input signal is allowed.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA}	analog supply voltage		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{CCO}	output stages supply voltage		3.0	3.3	5.25	V
I _{CCA}	analog supply current		_	18	tbf	mA
I _{CCD}	digital supply current		_	13	tbf	mA
Icco	output stages supply current	f _{clk} = 30 MHz; ramp input	_	3	tbf	mA
INL	integral non-linearity	f _{clk} = 30 MHz; ramp input	_	±0.8	tbf	LSB
AINL	AC integral non-linearity	full-scale input sine wave; note 1	_	±0.75	tbf	LSB
		50% full-scale input sine wave; note 1	_	±0.5	tbf	LSB
DNL	differential non-linearity	f _{clk} = 30 MHz; ramp input	_	±0.3	±0.7	LSB
ADNL	AC differential non-linearity	full-scale input sine wave; note 1	_	±0.5	tbf	LSB
		50% full-scale input sine wave; note 1	_	±0.3	tbf	LSB
f _{clk(max)}	maximum clock frequency		40	_	_	MHz
P _{tot}	total power dissipation		_	165	tbf	mW

Note

1. $f_i = 10$ MHz and $f_{clk} = 30$ MHz; $f_i = 8$ MHz and $f_{clk} = 20$ MHz.

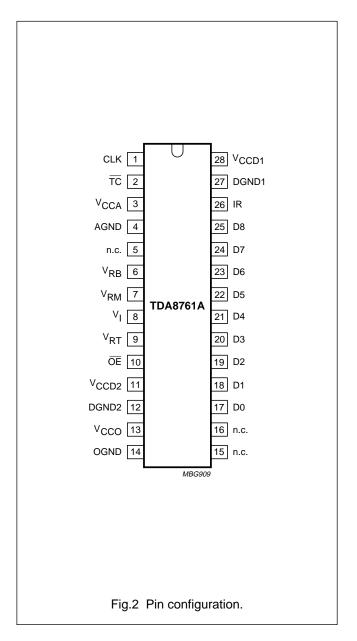

9-bit analog-to-digital converter for digital video

TDA8761A

ORDERING INFORMATION

TYPE		PACKAGE	
NUMBER	NAME	DESCRIPTION	VERSION
TDA8761AM	SSOP28	plastic shrink small outline package; 28 leads; body width 5.3 mm	SOT341-1

BLOCK DIAGRAM



9-bit analog-to-digital converter for digital video

TDA8761A

PINNING

SYMBOL	PIN	DESCRIPTION
CLK	1	clock input
TC	2	two's complement input (active LOW)
V_{CCA}	3	analog supply voltage (+5 V)
AGND	4	analog ground
n.c.	5	not connected
V_{RB}	6	reference voltage BOTTOM input
V_{RM}	7	reference voltage MIDDLE
VI	8	analog input voltage
V_{RT}	9	reference voltage TOP input
ŌĒ	10	output enable input (CMOS level input, active LOW)
V _{CCD2}	11	digital supply voltage 2 (+5 V)
DGND2	12	digital ground 2
V _{CCO}	13	supply voltage for output stages (+3 to 5 V)
OGND	14	output ground
n.c.	15	not connected
n.c.	16	not connected
D0	17	data output; bit 0 (LSB)
D1	18	data output; bit 1
D2	19	data output; bit 2
D3	20	data output; bit 3
D4	21	data output; bit 4
D5	22	data output; bit 5
D6	23	data output; bit 6
D7	24	data output; bit 7
D8	25	data output; bit 8 (MSB)
IR	26	in range data output
DGND1	27	digital ground 1
V _{CCD1}	28	digital supply voltage 1 (+5 V)

9-bit analog-to-digital converter for digital video

TDA8761A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CCA}	analog supply voltage	note 1	-0.3	+7.0	V
V _{CCD}	digital supply voltage	note 1	-0.3	+7.0	V
V _{CCO}	output stages supply voltage	note 1	-0.3	+7.0	V
ΔV_{CC}	supply voltage differences between				
	V _{CCA} and V _{CCD}		-1.0	+1.0	V
	V _{CCD} and V _{CCO}		-1.0	+4.0	V
	V _{CCA} and V _{CCO}		-1.0	+4.0	V
VI	input voltage	referenced to AGND	-0.3	+7.0	V
V _{i(p-p)}	AC input voltage for switching (peak-to-peak value)	referenced to DGND	_	V _{CCD}	V
Io	output current		_	10	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		0	+70	°C
Tj	junction temperature		_	+150	°C

Note

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	110	K/W

^{1.} The supply voltages V_{CCA} , V_{CCD} and V_{CCO} may have any value between -0.3 and +7.0 V provided that the supply voltage differences ΔV_{CC} are respected.

9-bit analog-to-digital converter for digital video

TDA8761A

CHARACTERISTICS

 $V_{CCA} = V_3 \text{ to } V_4 = 4.75 \text{ to } 5.25 \text{ V}; V_{CCD} = V_{11} \text{ to } V_{12} \text{ and } V_{28} \text{ to } V_{27} = 4.75 \text{ to } 5.25 \text{ V}; V_{CCO} = V_{13} \text{ to } V_{14} = 3.0 \text{ to } 5.25 \text{ V}; \\ AGND \text{ and DGND shorted together; } T_{amb} = 0 \text{ to } +70 \text{ °C}; \text{ typical values measured at } V_{CCA} = V_{CCD} = 5 \text{ V} \text{ and } V_{CCO} = 3.3 \text{ V}; V_{i(p-p)} = 1.8 \text{ V}; C_L = 15 \text{ pF and } T_{amb} = 25 \text{ °C}; \text{ unless otherwise specified.}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				1	1	
V _{CCA}	analog supply voltage		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{CCO}	output stages supply voltage		3.0	3.3	5.25	V
ΔV_{CC}	supply voltage differences between					
	V _{CCA} and V _{CCD}		-0.2	_	+0.2	V
	V _{CCA} and V _{CCO}		-0.2	_	+2.25	V
	V _{CCD} and V _{CCO}		-0.2	_	+2.25	V
I _{CCA}	analog supply current		_	18	tbf	mA
I _{CCD}	digital supply current		_	13	tbf	mA
Icco	output stages supply current	f _{clk} = 30 MHz; ramp input	_	3	tbf	mA
Inputs						·
CLOCK INP	UT CLK (REFERENCED TO DGND); no	ote 1				
V _{IL}	LOW level input voltage		0	_	0.3V _{CCD}	V
V _{IH}	HIGH level input voltage		0.7V _{CCD}	_	V _{CCD}	V
I _{IL}	LOW level input current	$V_{clk} = 0.3V_{CCD}$	-1	0	+1	μΑ
I _{IH}	HIGH level input current	$V_{clk} = 0.7V_{CCD}$	_	2	10	μΑ
Zi	input impedance	f _{clk} = 30 MHz	_	2	_	kΩ
C _i	input capacitance	f _{clk} = 30 MHz	_	2	_	pF
INPUTS OE	AND TC (REFERENCED TO DGND);	see Table 2				·
V _{IL}	LOW level input voltage		0	_	0.3V _{CCD}	V
V _{IH}	HIGH level input voltage		0.7V _{CCD}	_	V _{CCD}	V
I _{IL}	LOW level input current	$V_{IL} = 0.3V_{CCD}$	-1	_	_	μΑ
I _{IH}	HIGH level input current	$V_{IH} = 0.7V_{CCD}$	_	_	1	μΑ
V _I (ANALOG	INPUT VOLTAGE REFERENCED TO AG	ND)		•	•	•
I _{IL}	LOW level input current	$V_{I} = V_{RB} = 1.3 \text{ V}$	_	0	_	μΑ
I _{IH}	HIGH level input current	$V_{I} = V_{RT} = 3.43 \text{ V}$	_	35	_	μΑ
Z _i	input impedance	f _i = 10 MHz	_	8	_	kΩ
C _i	input capacitance	f _i = 10 MHz	_	5	_	pF

9-bit analog-to-digital converter for digital video

TDA8761A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reference	voltages for the resistor ladder;	see Table 1			1	!
V _{RB}	reference voltage BOTTOM		1.2	1.3	2.45	V
V _{RT}	reference voltage TOP		3.0	3.43	V _{CCA} - 0.8 V	V
V_{diff}	differential reference voltage V _{RT} – V _{RB}		1.8	2.13	3.0	V
I _{ref}	reference current	$V_{RT} - V_{RB} = 2.13 \text{ V}$	_	8.7	_	mA
R _{LAD}	resistor ladder		_	245	_	Ω
TC _{RLAD}	temperature coefficient of the resistor ladder		_	1860 456	_	ppm mΩ/K
V _{osB}	offset voltage BOTTOM	note 2	_	160	_	mV
V _{osT}	offset voltage TOP	note 2	_	160	_	mV
V _{i(p-p)}	analog input voltage (peak-to-peak value)	note 3	1.5	1.81	2.5	V
Outputs						I.
DIGITAL OU	TPUTS D8 TO D0 AND IR (REFERENCE	ED TO OGND)				
V _{OL}	LOW level output voltage	I _{OL} = 1 mA	0	_	0.5	V
V _{OH}	HIGH level output voltage	I _{OH} = -1 mA	V _{CCO} -0.5	_	V _{CCO}	V
l _{OZ}	output current in 3-state mode	0.5 V < V _O < V _{CCO}	-20	_	+20	μΑ
Switching	characteristics			•		•
CLOCK INP	⊔⊤ CLK; see Fig.4; note 1					
f _{clk(max)}	maximum clock frequency		40	_	_	MHz
t _{CPH}	clock pulse width HIGH		10	_	_	ns
t _{CPL}	clock pulse width LOW		10	_	_	ns
Analog sig	gnal processing					
LINEARITY						
INL	integral non-linearity	f _{clk} = 30 MHz; ramp input	_	±0.8	tbf	LSB
AINL	AC integral non-linearity	full-scale input sine wave; note 5	_	±0.75	tbf	LSB
		50% full-scale input sine wave; note 5	_	±0.5	tbf	LSB
DNL	differential non-linearity	f _{clk} = 30 MHz; ramp input	_	±0.3	±0.7	LSB
ADNL	AC differential non-linearity	full-scale input sine wave; note 5	_	±0.5	tbf	LSB
		50% full-scale input sine wave; note 5	_	±0.3	tbf	LSB
OFER	offset error	middle code; $V_{RB} = 1.3 \text{ V};$ $V_{RT} = 3.43 \text{ V}$	_	±1	_	LSB
GER	gain error (from device to device)	V _{RB} = 1.3 V; V _{RT} = 3.43 V; note 4	_	±0.1	-	%

9-bit analog-to-digital converter for digital video

TDA8761A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
BANDWIDTH	H (f _{clk} = 30 MHz)		ļ	!	!	!
В	analog bandwidth	full-scale sine wave;	-	10	_	MHz
		75% full-scale sine wave; note 6	_	14	-	MHz
		small signal at mid-scale; $V_I = \pm 10$ LSB at code 256; note 6	-	350	_	MHz
t _{STLH}	analog input settling time LOW-to-HIGH	full-scale square wave; Fig.6; note 7	_	2.0	tbf	ns
t _{STHL}	analog input settling time HIGH-to-LOW	full-scale square wave; Fig.6; note 7	_	2.5	tbf	ns
HARMONIC	s (f _{clk} = 30 MHz); see Figs 7 and 8		•			
THD	total harmonic distortion	f _i = 10 MHz	_	-56	_	dB
SIGNAL-TO	-NOISE RATIO; see Figs 7 and 8; not	te 8				
S/N	signal-to-noise ratio (full scale)	without harmonics; $f_{clk} = 30 \text{ MHz}$; $f_i = 10 \text{ MHz}$	51	53	_	dB
EFFECTIVE	BITS; see Figs 7 and 8; note 8					•
EB	effective bits	f _{clk} = 30 MHz				
		f _i = 4.43 MHz	_	8.7	_	bits
		f _i = 10 MHz	_	8.2	_	bits
TWO-TONE	; note 9				_	
TTIR	two-tone intermodulation rejection	f _{clk} = 30 MHz	_	-56	_	dB
BIT ERROR	RATE					
BER	bit error rate	$f_{clk} = 30 \text{ MHz};$ $f_i = 10 \text{ MHz};$ $V_l = \pm 16 \text{ LSB at}$ $code\ 256$	_	10 ⁻¹³	_	times/ sample
DIFFERENT	IAL GAIN; note 10					
G _{diff}	differential gain	f _{clk} = 30 MHz; PAL modulated ramp	_	0.5	-	%
DIFFERENT	IAL PHASE; note 10			•		•
Ψdiff	differential phase	f _{clk} = 30 MHz; PAL modulated ramp	-	0.3	-	deg

9-bit analog-to-digital converter for digital video

TDA8761A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing (fc	$_{k}$ = 30 MHz; C_{L} = 15 pF); see Fig.4	; note 11		'		
t _{ds}	sampling delay time		_	_	2	ns
t _h	output hold time		5	_	_	ns
t _d	output delay time	V _{CCO} = 4.75 V	_	13	16	ns
		V _{CCO} = 3.15 V	_	16	19	ns
C _L	digital output load		_	15	40	pF
3-state ou	tput delay times; see Fig.5			•		·
t _{dZH}	enable HIGH		_	14	18	ns
t _{dZL}	enable LOW		_	16	20	ns
t _{dHZ}	disable HIGH		_	16	20	ns
t _{dLZ}	disable LOW		_	14	18	ns

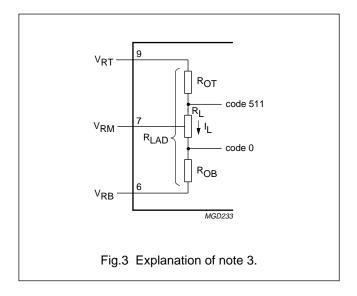
Notes

- 1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must not be less than 0.5 ns.
- 2. Analog input voltages producing code 0 up to and including code 511:
 - a) V_{osB} (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and the reference voltage BOTTOM (V_{RB}) at T_{amb} = 25 °C.
 - b) V_{osT} (voltage offset TOP) is the difference between V_{RT} (reference voltage TOP) and the analog input which produces data outputs equal to code 511 at $T_{amb} = 25$ °C.
- In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities
 of the converter reference resistor ladder (corresponding to output codes 0 and 511 respectively) are connected to
 pins V_{RB} and V_{RT} via offset resistors R_{OB} and R_{OT} as shown in Fig.3.
 - a) The current flowing into the resistor ladder is $I_L = \frac{V_{RT} V_{RB}}{R_{OB} + R_L + R_{OT}}$ and the full-scale input range at the converter,

to cover code 0 to code 511, is
$$V_{I} = R_{L} \times I_{L} = \frac{R_{L}}{R_{OB} + R_{L} + R_{OT}} \times (V_{RT} - V_{RB}) = \dot{0.852} \times (V_{RT} - V_{RB})$$

- b) Since R_L , R_{OB} and R_{OT} have similar behaviour with respect to process and temperature variation, the ratio
 - $\frac{R_L}{R_{OB} + R_L + R_{OT}}$ will be kept reasonably constant from device to device. Consequently variation of the output

codes at a given input voltage depends mainly on the difference $V_{RT} - V_{RB}$ and its variation with temperature and supply voltage. When several ADCs are connected in parallel and fed with the same reference source, the matching between each of them is then optimized.


4. GER =
$$\frac{(V_{511} - V_0) - 1.8 \text{ V}}{1.8 \text{ V}} \times 100$$

- 5. $f_i = 10$ MHz and $f_{clk} = 30$ MHz; $f_i = 8$ MHz and $f_{clk} = 20$ MHz.
- 6. The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device. No glitches greater than 2 LSBs, neither any significant attenuation are observed in the reconstructed signal.
- 7. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale input (square-wave signal) in order to sample the signal and obtain correct output data.

9-bit analog-to-digital converter for digital video

TDA8761A

- 8. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
- 9. Intermodulation measured relative to either tone with analog input frequencies of 10.0 MHz and 10.10 MHz. The two input signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter.
- 10. Measurement carried out using video analyser VM700A, where the video analog signal is reconstructed through a digital-to-analog converter.
- 11. Output data acquisition: the output data is available after the maximum delay time of t_d.

9-bit analog-to-digital converter for digital video

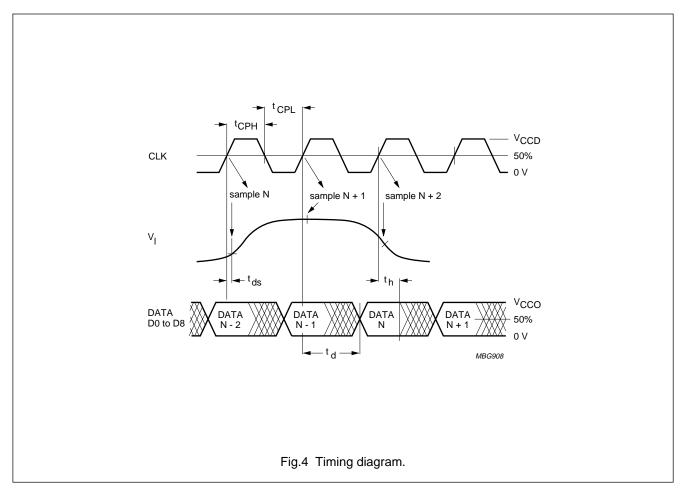
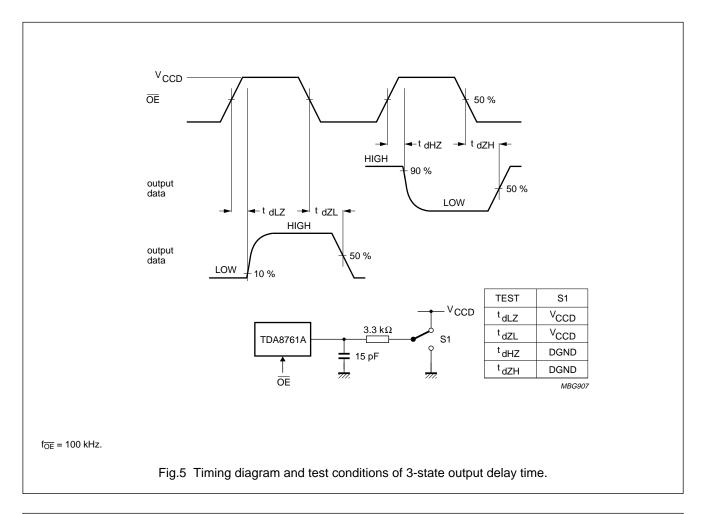
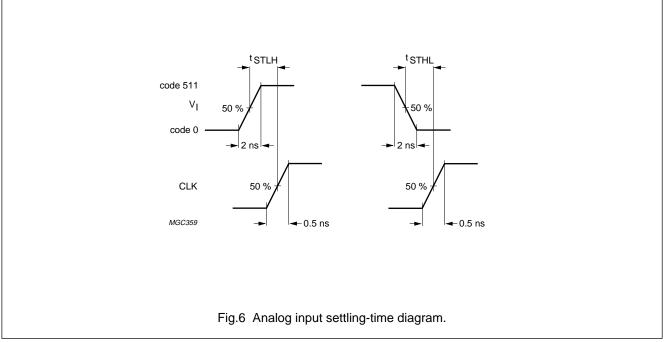

TDA8761A

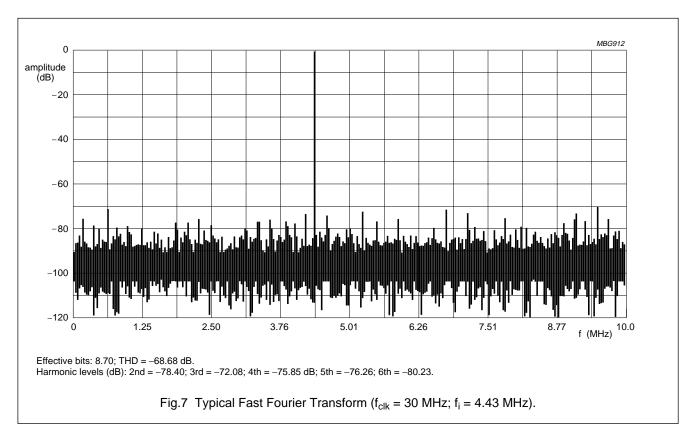
Table 1 Output coding and input voltage (typical values; referenced to AGND, $V_{RB} = 1.3 \text{ V}$, $V_{RT} = 3.43 \text{ V}$)

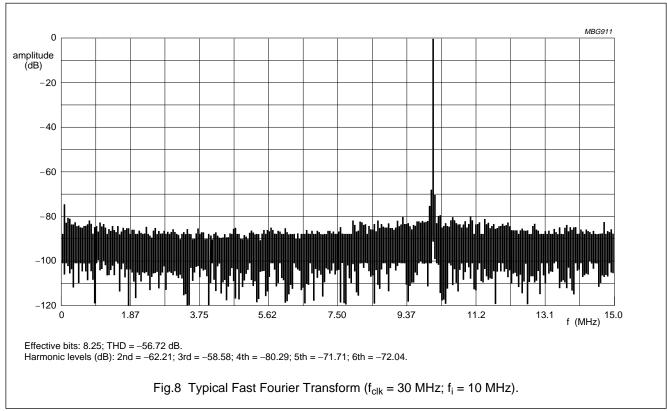
STEP	V	IR	BINARY OUTPUT BITS						TWO'S COMPLEMENT OUTPUT BITS											
SIEF	V _{I(p-p)}	IK	D8	D7	D6	D5	D4	D3	D2	D1	D0	D8	D7	D6	D5	D4	D3	D2	D1	D0
U/F	<1.46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1.46	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1		1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
					-											-				
510		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
511	3.27	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
O/F	>3.27	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1


Table 2 Mode selection

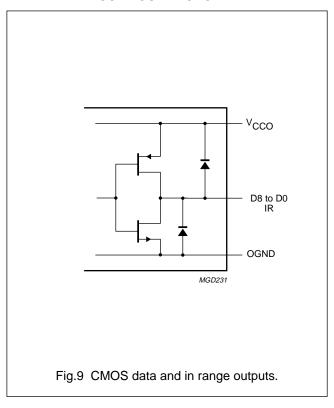

TC	ŌĒ	D8 to D0	IR
X	1	high impedance	high impedance
0	0	active; two's complement	active
1	0	active; binary	active

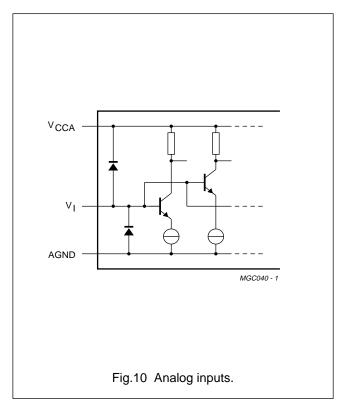
9-bit analog-to-digital converter for digital video

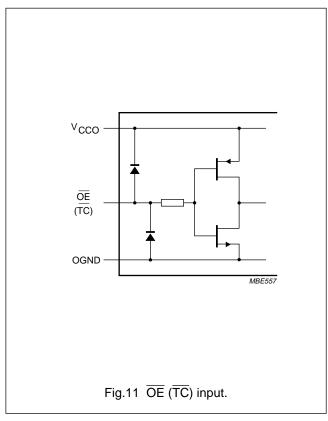

TDA8761A

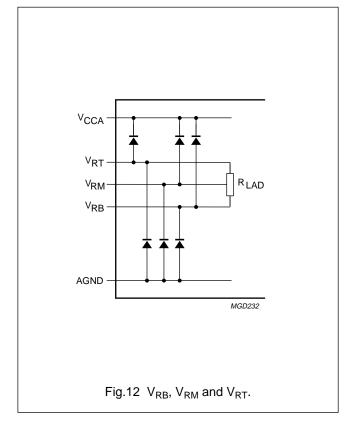


9-bit analog-to-digital converter for digital video

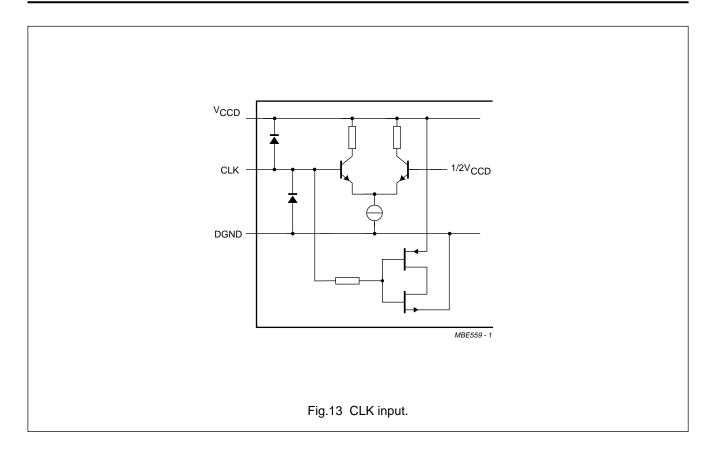

TDA8761A

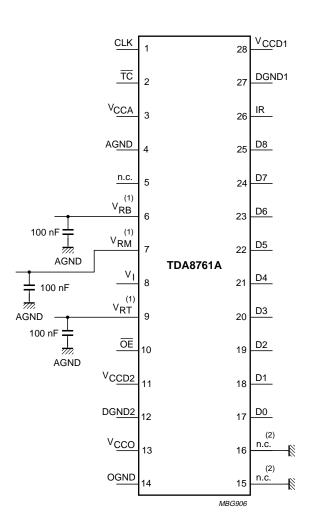





TDA8761A

INTERNAL PIN CONFIGURATIONS




TDA8761A

9-bit analog-to-digital converter for digital video

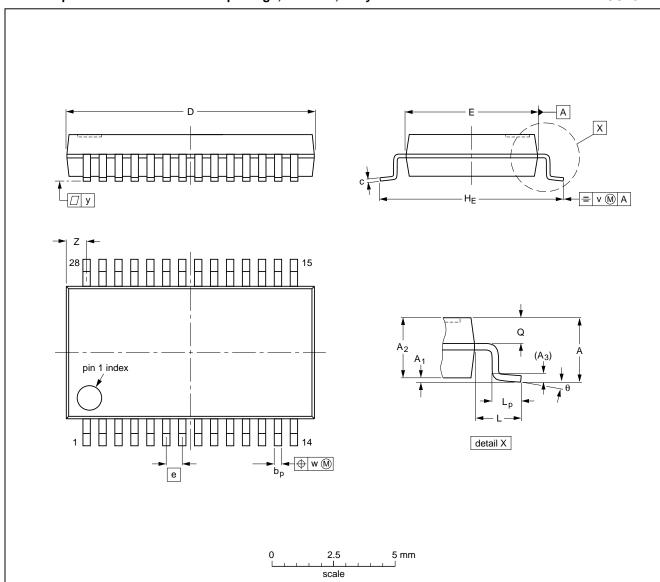
TDA8761A

APPLICATION INFORMATION

The analog and digital supplies should be separated and decoupled.

The external voltage regulator must be built such that a good supply voltage ripple rejection is achieved with respect to the LSB value. Eventually, the reference ladder voltages can be derived from a well regulated V_{CCA} supply through a resistor bridge and a decoupled capacitor.

- (1) V_{RB} , V_{RM} and V_{RT} are decoupled to AGND.
- (2) Pins 15 and 16 should be connected to DGND in order to prevent noise influence.


Fig.14 Application diagram.

TDA8761A

PACKAGE OUTLINE

SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm

SOT341-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	10.4 10.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.1 0.7	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT341-1		MO-150AH			$ \ \ \bigoplus \big($	93-09-08 95-02-04

9-bit analog-to-digital converter for digital video

TDA8761A

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SSOP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for SSOP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions, only consider wave soldering SSOP packages that have a body width of 4.4 mm, that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

9-bit analog-to-digital converter for digital video

TDA8761A

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification					

Application information

Where application information is given, it is advisory and does not form part of the specification.

is not implied. Exposure to limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.