INTEGRATED CIRCUITS

Objective specification Supersedes data of 1996 Sep 05 File under Integrated Circuits, IC02 1996 Sep 18

TDA8779

FEATURES

- Two 10-bit ADCs with multiplexed outputs
- Two 10-bit DACs with multiplexed inputs
- Sampling rate for the ADCs and DACs up to 20 MHz
- Digital outputs (for the ADC) and inputs (for the DAC) are TTL/CMOS compatible (2.7 to 5.5 V)
- Internal reference voltage regulator
- Power dissipation 520 mW
- Standby mode.

APPLICATIONS

Wireless communication.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The TDA8779 contains two 10-bit high speed ADCs and two 10-bit DACs for wireless communication (for use in transceiver modules). This device converts two analog input signals (channels I and Q) and digital inputs (D0 to D9) at a maximum sampling rate of 20 MHz. The input bias voltages for the analog input voltages are provided internally at the middle code. The analog input and output voltages are AC coupled.

The data sampling is performed on the rising edge of the clock for ADCs and DACs.

All reference voltages are generated internally.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA1}	analog supply voltage for the ADC part		4.75	5.0	5.5	V
V _{CCD1}	digital supply voltage for the ADC part		4.75	5.0	5.5	V
V _{CCA2}	analog supply voltage for the DAC part		4.75	5.0	5.5	V
V _{CCD2}	digital supply voltage for the DAC part		4.75	5.0	5.5	V
V _{CCO}	output stage supply voltage		2.7	3.0	5.5	V
I _{CCA}	analog supply current		-	71	-	mA
I _{CCD}	digital supply current		_	31	—	mA
I _{CCO}	output stage supply current	ramp input; f _{CLK} = 20 MHz	-	2	-	mA
f _{CLK(ADC)max}	maximum clock frequency for the ADC part		20	-	-	MHz
INLA	integral non linearity for the ADC part	full-scale; ramp input; f _{CLK} = 20 MHz	-	±2	-	LSB
DNLA	differential non linearity for the ADC part	50% full-scale; ramp input; f _{CLK} = 20 MHz	-	±0.3	-	LSB
f _{CLK(DAC)max}	maximum clock frequency for the DAC part		20	_	-	MHz
INLD	integral non linearity for the DAC part	full-scale; ramp input; f _{CLK} = 20 MHz	-	±2	_	LSB
DNLD	differential non linearity for the DAC part	full-scale; ramp input; f _{CLK} = 20 MHz	-	±0.75	-	LSB
P _{tot}	total power dissipation		-	520	_	mW

ORDERING INFORMATION

TYPE		PACKAGE	
NUMBER	NAME	DESCRIPTION	VERSION
TDA8779H	QFP44	plastic quad flat package; 44 leads (lead length 1.3 mm); body $10 \times 10 \times 1.75$ mm	SOT307-2

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION					
AGND1	1	analog ground 1					
DEC1	2	decoupling input 1					
DEC2	3	decoupling input 2					
INI	4	I channel ADC input					
DEC3	5	decoupling input 3					
INQ	6	Q channel ADC input					
V _{CCA1}	7	analog supply voltage 1 for ADC part (+5 V)					
V _{CCA2}	8	analog supply voltage 2 for DAC part (+5 V)					
OUTI	9	I channel DAC analog output					
DEC4	10	decoupling input 4					
OUTQ	11	Q channel DAC analog output					
DEC5	12	decoupling input 5					
AGND2	13	analog ground 2					
V _{CCD2}	14	digital supply voltage 2 for DAC part (+5 V)					
D0D	15	multiplexed input for the DACs; bit 0					
D1D	16	multiplexed input for the DACs; bit 1					
D2D	17	multiplexed input for the DACs; bit 2					
D3D	18	multiplexed input for the DACs; bit 3					
D4D	19	multiplexed input for the DACs; bit 4					
D5D	20	multiplexed input for the DACs; bit 5					
D6D	21	multiplexed input for the DACs; bit 6					
D7D	22	multiplexed input for the DACs; bit 7					
D8D	23	multiplexed input for the DACs; bit 8					

SYMBOL	PIN	DESCRIPTION			
D9D	24	multiplexed input for the DACs; bit 9			
DGND2	25	digital ground 2			
CLKD	26	transmission block clock			
STDBYD	27	power standby for the DAC part (active HIGH)			
DGND1	28	digital ground 1			
STDBYA	29	power standby for the ADC part (active HIGH)			
CLKA	30	reception block clock			
V _{CCD1}	31	digital supply voltage 1 for ADC part (+5 V)			
ŌE	32	ADCs digital output enable (3-state output); (active LOW)			
OGND	33	input/output ground			
D0A	34	I and Q digital outputs; bit 0			
D1A	35	I and Q digital outputs; bit 1			
D2A	36	I and Q digital outputs; bit 2			
D3A	37	I and Q digital outputs; bit 3			
D4A	38	I and Q digital outputs; bit 4			
D5A	39	I and Q digital outputs; bit 5			
D6A	40	I and Q digital outputs; bit 6			
D7A	41	I and Q digital outputs; bit 7			
D8A	42	I and Q digital outputs; bit 8			
D9A	43	I and Q digital outputs; bit 9			
V _{CCO}	44	output supply voltage (2.7 to 5.5 V)			

TDA8779

10-bit converter interface (ADC/DAC) for quadrature transceiver

TDA8779

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CCA1}	analog supply voltage for ADC part		-0.3	+7.0	V
V _{CCA2}	analog supply voltage for DAC part		-0.3	+7.0	V
V _{CCD1}	digital supply voltage for ADC part		-0.3	+7.0	V
V _{CCD2}	digital supply voltage for DAC part		-0.3	+7.0	V
V _{cco}	output stage supply voltage		-0.3	+7.0	V
ΔV _{CC}	voltage difference between:				
	V _{CCA} – V _{CCD}		-1.0	+1.0	V
	V _{CCA} – V _{CCO}		-1.0	+4.0	V
	V _{CCD} – V _{CCO}		-1.0	+4.0	V
I _o	output current		-	10	mA
Vi	input voltage	referenced to AGND	-0.3	+7.0	V
V _{clk(p-p)}	AC input switching voltage (peak-to-peak value)	referenced to DGND	-	V _{CCD}	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-20	+75	°C
Tj	junction temperature		-	150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	in free air	75	K/W

CHARACTERISTICS

 $V_{CCA} = V_7$ and V_8 to V_1 and $V_{13} = 4.75$ to 5.5 V; $V_{CCD} = V_{31}$ and V_{14} to V_{28} and $V_{25} = 4.75$ to 5.5 V; $V_{CCO} = V_{44}$ to $V_{33} = 2.7$ to 5.5 ; AGND1, AGND2, OGND, DGND1 and DGND2 are shorted together; $T_{amb} = -20$ to +70 °C; measured typically at $V_{CCA} = V_{CCD} = 5$ V and $V_{CCO} = 3$ V; $C_L = 15$ pF; $T_{amb} = 25$ °C; unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	
Supplies			•		•	•
V _{CCA1}	analog supply voltage for ADC part		4.75	5.0	5.5	V
V _{CCD1}	digital supply voltage for ADC part		4.75	5.0	5.5	V
V _{CCA2}	analog supply voltage for DAC part		4.75	5.0	5.5	V
V _{CCD2}	digital supply voltage for DAC part		4.75	5.0	5.5	V
V _{cco}	output stage supply voltage		2.7	3.0	5.5	V
ΔV_{CC}	voltage difference between					
	V _{CCA} – V _{CCD}		-0.2	-	+0.2	V
	V _{CCA} – V _{CCO}		-0.2	-	+2.5	V
	V _{CCD} – V _{CCO}		-0.2	-	+2.5	V
I _{CCA}	analog supply current		-	71	-	mA
I _{CCD}	digital supply current		-	31	_	mA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	
I _{CCO}	output stage supply current	ramp input; f _{CLK} = 20 MHz	_	2	_	mA
I _{CCA1(stb)}	analog standby current for ADC part		-	5	_	mA
I _{CCA2(stb)}	analog standby current for DAC part	-	5	-	mA	
ADC PART	-		. !	1	Į	1
CLOCK INPL	JT					
VIL	LOW level input voltage		0	_	0.6	V
VIH	HIGH level input voltage		2.2	_	V _{CCD1}	V
I _{IL}	LOW level input current		-10	-	+10	μA
I _{IH}	HIGH level input current		-10	_	+10	μA
DIGITAL INP	UTS: PINS OE AND STDBYA					
VIL	LOW level input voltage		0	_	0.6	V
V _{IH}	HIGH level input voltage		2.2	_	V _{CCD1}	V
IIL	LOW level input current		-1	0	+1	μA
I _{IH}	HIGH level input current	_	1	μA		
ANALOG INF	PUTS					
I _{IL}	LOW level input current	for code 0	-	tbf	-	μA
I _{IH}	HIGH level input current	for code 1023	-	tbf	-	μA
V _{i(p-p)}	analog input voltage (peak-to-peak value)	full-scale	tbf	1.5	tbf	V
V _{i(p-p)over}	maximum analog input over voltage (peak-to-peak value)	overvoltage	-	-	4.5	V
ZI	input impedance		-	10	-	kΩ
CI	input capacitance		_	3	-	pF
DIGITAL OUT	IPUTS: D0A TO D9A					
V _{OL}	LOW level output voltage	I _o = 1 mA	0	_	0.5	V
V _{OH}	HIGH level output voltage	$I_o = -1 \text{ mA}$	$V_{CCO}-0.5$	_	V _{CCO}	V
I _{oZ}	output current in 3-state mode	$0.5 \text{ V} < \text{V}_{\text{o}} < \text{V}_{\text{CCO}} - 0.5 \text{ V}$	-20	-	+20	μA
Switching	CHARACTERISTICS (see Fig.3)					
f _{CLKmax}	maximum clock frequency		20	-	-	MHz
t _{CH}	clock pulse width HIGH		20	-	-	ns
t _{CL}	clock pulse width LOW		20	-	-	ns
t _r	clock rise time		-	4	-	ns
t _f	clock fall time		-	4	-	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ANALOG SIG	GNAL PROCESSING	ŀ	1			ļ
Linearity						
INLA	integral non linearity	ramp input; f _{CLK} = 20 MHz	-	±2	-	LSB
DNLA	differential non linearity	full-scale; ramp input; f _{CLK} = 20 MHz	-	±0.5	-	LSB
		50% full-scale; ramp input; f _{CLK} = 20 MHz	-	±0.3	-	LSB
Noise floor	; note 2			·	·	
NF	noise floor	f _{in} = 5.1 MHz; 20 Msps	-	-60	_	dB
Harmonics	; note 3		·			·
THD	total harmonic distortion	f _i = 5.1 MHz; 20 Msps	-	-54	-	dB
Spurious fi	ree dynamic range		1			
SFDR	spurious free dynamic range	f _i = 5.1 MHz; 20 Msps	45	56	-	dB
Matching b	between the I and Q channels					•
ΔV	amplitude matching	$f_{in} = 5.1 \text{ MHz};$ $f_{CLK} = 20 \text{ MHz};$ $T_{amb} = 25^{\circ}\text{C}$	-	_	6	%
Δφ	phase matching	$f_{in} = 5.1 \text{ MHz};$ $f_{CLK} = 20 \text{ MHz};$ $T_{amb} = 25^{\circ}\text{C}$	-	-	2	Deg
Bandwidth					1	1
В	bandwidth maximum attenuation of -0.3 dB	full-scale sine wave; T _{amb} = 25°C;	5.5	-	-	MHz
		50% full-scale sine wave; $T_{amb} = 25^{\circ}C;$	tbf	-	-	MHz
TIMING: (TH	E OUTPUT DATA IS AVAILABLE AFTER THE M	MAXIMUM DELAY TIME t_d ; $C_L = 15$	5 pF; see Fig	.3		
t _{ds}	sampling delay time		-	-	5	ns
t _h	output hold time		5	_	-	ns
t _d	output delay time	V _{CCO} = 4.75 V	-	12	15	ns
		V _{CCO} = 3.15 V	-	17	20	ns
		$V_{CCO} = 2.7 V$	-	21	24	ns
3-STATE OU	TPUT DELAY TIMES; see Fig.4		1	-1	1	1
t _{dZH}	output delay enable HIGH		-	14	18	ns
t _{dZL}	output delay enable LOW		-	16	20	ns
t _{dHZ}	output delay disable HIGH		-	16	20	ns
t _{dLZ}	output delay disable LOW		-	14	18	ns

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT STANDBY MODE OUTPUT DELAY TIMES; STDBYA standby (LOW-to-HIGH transition) 100 μs t_{d(stb)LH} _ start-up (HIGH-to-LOW transition) 100 _ μs t_{d(stb)HL} CROSSTALK ON THE ADC crosstalk into the ADC $f_{CLK(DAC)} = 16.384 \text{ MHz};$ -55 dB α_{ct} $f_{CLK(ADC)} = 8.192 \text{ MHz};$ $T_{amb} = 25^{\circ}C$; both DACs switching between input codes 0 and 1023; one ADC 1 V (p-p) sine wave at 4 MHz and the other ADC set at the middle code DAC PART DIGITAL INPUTS: DOD TO D9D AND CLKD VIL LOW level input voltage 0 0.6 V HIGH level input voltage 2.2 V VIH _ V_{CCD2} LOW level input current -200 -120 0 μΑ Ι_{ΙL} -10 HIGH level input current +10 μΑ l_Η _ DIGITAL INPUT; STDBYD V_{IL} LOW level input voltage 0 0.6 V V VIH HIGH level input voltage 2.2 V_{CCD2} LOW level input current -1 0 μA Ι_{ΙL} +1 HIGH level input current 1 μΑ _ l_Η TIMING: see Fig.5 MHz maximum clock frequency 20 f_{CLK(max)} clock pulse width HIGH 20 ns _ _ t_{CH} clock pulse width LOW 20 ns t_{CL} clock rise time _ 4 tr ns 4 clock fall time t_f _ _ ns input data set-up time 10 tbf ts ns input data hold time 0 tbf _ ns t_h ANALOG OUTPUTS; note 1 V_{o(p-p)} output voltage (peak-to-peak value) full-scale tbf 1 tbf V 15 Z_{oL} output load impedance see Fig.6 _ _ pF 0.3 _ _ kΩ TRANSFER FUNCTION INLD integral non linearity ramp input; f_{CLK} = 20 MHz ±3 LSB _ DNLD differential non linearity ramp input; f_{CLK} = 20 MHz; ±0.75 LSB _ _ full scale; T_{amb} = 25°C В maximum bandwidth 5.5 MHz

TDA8779

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Matching b	etween channel I and Q					
ΔV	amplitude matching	$f_{o} = 5.1 \text{ MHz};$ $f_{CLK} = 20 \text{ MHz};$ $T_{amb} = 25^{\circ}\text{C}$	_	-	6	%
Δφ	phase matching	$\label{eq:f_o} \begin{split} f_o &= 5.1 \text{ MHz}; \\ f_{CLK} &= 20 \text{ MHz}; \\ T_{amb} &= 25^\circ\text{C} \end{split}$	_	_	2	Deg
DYNAMIC RA	ANGE; note 2					
NF	noise floor	$f_o = 5.1 \text{ MHz};$ $f_{CLK} = 20 \text{ MHz}$	-	-60	_	dB
SPURIOUS F	REE DYNAMIC RANGE					
SFDR	spurious free dynamic range	$f_o = 5.1 \text{ MHz};$ $f_{CLK} = 20 \text{ MHz}$	-	50	_	dB
STANDBY M	ODE OUTPUT DELAY; STDBYD					
t _{d(stb)LH}	standby (LOW-to-HIGH transition)		_	-	100	μs
t _{d(stb)HL}	start-up (HIGH-to-LOW transition)		-	-	100	μs
CROSSTALK	ON THE DAC					
α _{ct}	crosstalk into the DAC	$ f_{CLK(DAC)} = 16.384 \text{ MHz}; \\ f_{CLK(ADC)} = 8.192 \text{ MHz}; \\ T_{amb} = 25^{\circ}\text{C}; \text{ one DAC} \\ switching between input \\ codes 0 and 1023 the other \\ DAC set at the middle \\ code; both ADCs 1 V (p-p) \\ sine wave at 4 MHz; \\ incoherent $	_	-	-55	dB

Notes

- 1. It is recommended that the DAC output voltage is AC coupled in order to achieve optimum performance.
- 2. The noise floor is the maximum value of the output spectrum without taking into account fundamental and harmonics of the input signal.
- 3. Harmonics are obtained via a Fast Fourier Transformer (FFT) treatment taking 8K acquisition points per period.

TDA8779

10-bit converter interface (ADC/DAC) for quadrature transceiver

BINARY OUTPUT BITS $V_{i} - V_{512}$ STEP (V) D9A D8A D0A D7A D6A D5A D4A D3A D2A D1A underflow <-0.75 0 0 0 0 0 0 0 0 0 0 -0.75 0 0 0 0 0 0 0 0 0 0 0 512 0 1 0 0 0 0 0 0 0 0 0 ••• ••• ••• 1023 0.75 1 1 1 1 1 1 1 1 1 0 >0.75 1 1 1 1 1 1 1 1 1 1 overflow

Table 1 Output coding and input voltage (typical value, referenced to AGND)

Table 2	Input coding ar	d output voltage	(typical value.	referenced to	DGND
	inpat obaing ai	a output tonago	(cyprodi raido,	101010110000 10	20112)

STED	BINARY INPUT BITS										$V_{o} - V_{512}$
SIEF	D9D	D8D	D7D	D6D	D5D	D4D	D3D	D2D	D1D	D0D	(V)
0	0	0	0	0	0	0	0	0	0	0	-0.5
512	1	0	0	0	0	0	0	0	0	0	0
1023	1	1	1	1	1	1	1	1	1	0	0.5

Table 3Mode selection

OE	D0A TO D9A
1	high impedance
0	active; binary

Table 4Standby selection

STDBYA	D0 TO D9	I _{CCA} + I _{CCD} (typ.)
1	_	5 mA
0	active	64 mA

Table 5 Standby selection

STDBYD	OUTI AND OUTQ	I _{CCA} + I _{CCD} (typ.)
1	_	5 mA
0	active	38 mA

TEST	SWITCH S1
t _{dLZ}	V _{CCD}
t _{dZL}	V _{CCD}
t _{dHZ}	DGND
t _{dZH}	DGND

 Table 6
 Test conditions for Fig.4

APPLICATION INFORMATION

PACKAGE OUTLINE

TDA8779

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397 750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TDA8779

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.