TFB2010 FUTUREBUS+ ARBITRATION BUS CONTROLLER

SLLS125A - OCTOBER 1990 - REVISED NOVEMBER 1993

- Supports Distributed Arbitration for Futurebus+ Master Selection
- Supports Arbitrated Messages in Distributed and Central Modes
- Enables Use of a Common Hardware and Software Interface for Both Distributed and Central Modes
- Requires No Hardware Modifications for Changing Between Distributed and Central Modes
- Provides a CSR Bus Interface for Easy Integration into the Futurebus+ CSR Address Space
- Has Two Bus Request Lines That Each May Be Assigned Any One of 256 Priority Levels
- Supports Round-Robin Fairness Arbitration Within Two Separate Priority Levels to Avoid Starvation of Any Single Module

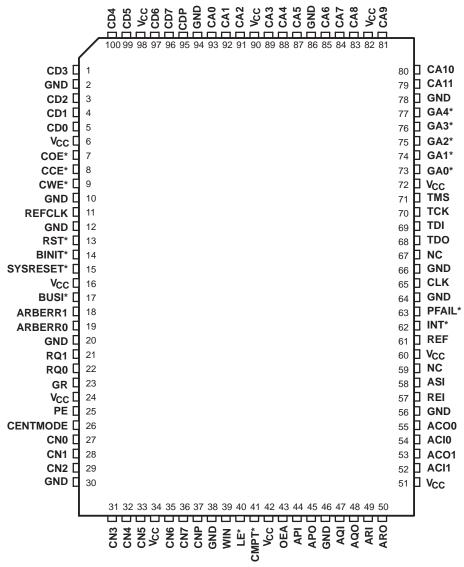
- Supports Distributed-Mode Bus Parking to Improve Performance of Successive Bus Acquisitions By a Single Module During Idle Bus Conditions
- Offers Accurate Arbitration Settling Time and Glitch Filter Programmability to Allow Optimal Arbitration Bus Performance
- Provides a FIFO for Capturing up to Four Incoming Arbitrated Messages
- Provides Hardware Support of Targeted Interrupts
- Supports Power-Fail Message Indication
 With a Separate Terminal and Interrupt
- Provides On-Chip Error Time-Out Detection
- Has a JTAG Test Port

description

The TFB2010 arbitration bus controller (ABC) is a member of the Texas Instruments Futurebus+ chip set. This chip set provides an integrated approach to the Futurebus+ interface that reduces new-product design time, allows more functionality per circuit board, improves overall interface reliability, and reduces end-user down time through built-in test capabilities.

The TFB2010 performs the Futurebus+ distributed-arbitration protocol to gain tenure of the bus (distributed mode only), to send and receive arbitrated messages (central or distributed mode), and to update central-mode arbiter priorities (central mode only).

The TFB2010 can be used in conjunction with a central-bus arbiter as an arbitrated-message controller to program the central-bus arbiter, send asynchronous interrupts, or send event messages or interrupts to other modules. In the case of a failure in the central-bus arbiter or if distributed arbitration is desired, it can be used as a distributed-arbitration controller without a change in the host software. Priority changes are sent to the central arbiter as arbitrated messages. This device monitors the bus for arbitration messages, storing these in a FIFO or in the targeted interrupt register for reference by the processor. It also provides the necessary control functions to gain control of the Futurebus+ for a module attempting to perform a bus transaction when operating in the distributed-arbitration mode.


The TFB2010 is offered in a 100-pin plastic quad flat package (PJM) to enhance interface capability. The TFB2010 is characterized for operation over the commercial temperature range of 0°C to 70°C.

NOTE: To maintain consistency with the notation used in the Futurebus+ standard (IEEE Std 896.1–1991), an active low-signal is denoted herein by use of the trailing asterisk (*) on the signal name.

terminal assignments

PJM . . . PACKAGE (TOP VIEW)

NC - No internal connection

SLLS125A - OCTOBER 1990 - REVISED NOVEMBER 1993

Terminal Functions

CSR bus

TERM	TERMINAL			DECORPTION	
NAME	NO.	1/0	FROM/TO	DESCRIPTION	
CA<11:0>	79,80,81,83, 84,85,87,88, 89,91,92,93	I	CSR bus	CSR bus address inputs	
CCE*	8	I	CSR bus	CSR bus chip enable input	
CD<7:0>	96,97,99, 100,1,3,4,5	I/O	CSR bus	CSR bus data	
CDP	95	I/O	CSR bus	CSR bus data odd parity	
COE*	7	1	CSR bus	CSR bus output enable input	
CWE*	9	- 1	CSR bus	CSR bus write enable input	

protocol controller interface

TERMINA	\L					
NAME	NO.	1/0	FROM/TO	DESCRIPTION		
ARBERR<1:0>	18,19	0		Arbitration error outputs: LL No error LH AC0 and AC1 asserted during phase 3 HL Arbitration comparison error or parity error HH Arbitration time-out error (phase 2 or 4)		
GR	23	0		Futurebus + mastership has been granted output (bus tenure may begin). This signal remains in the high-impedance state while in the central-bus arbitration mode.		
PE	25	I/O		In distributed mode when this device is the bus master, the TFB2010 asserts PE to indicate that a module with a higher priority has become the master elect. PE is released along with GR when RQ1 and RQ0 are released. In central mode, the TFB2010 puts this output in a high-impedance state to allow the central-arbitration controller to control preemption. PE is monitored by the TFB2010 during a Futurebus+ system reset to determine the system operational mode (central or distributed) following the reset.		
RQ<1:0>	21,22	ı		Futurebus+ mastership is requested in centralized mode input: RQ0 asserted: use arbitration number in the RQ0 priority register RQ1 asserted: use arbitration number in the RQ1 priority register Once a request is asserted, it is not released until GR* has been asserted (the TI protocol controllers perform this handshake internally). Once GR* is asserted, RQn* may be released at any time after AS has been asserted by the module in the last bus transaction (AS may already be released if no further transactions are to take place). Both request lines must be released prior to release of GR*. Another RQn* can be asserted after GR* and PE have been released.		

SLLS125A – OCTOBER 1990 – REVISED NOVEMBER 1993

Terminal Functions

other module interfaces

TERMIN	TERMINAL		FROME	DECORPORA		
NAME	NO.	1/0	FROM/TO	DESCRIPTION		
CLK	65	I		Clock input. CLK is used by the CSR bus master(s).		
INT*	62	O (open-collector)		Host interrupt output. When an enabled interrupt condition occurs, INT is driven low. Interrupts are cleared by writing a zero to the appropriate bit in the interrupt register. The interrupt goes high during the write cycle to the interrupt register even if another interrupt is pending.		
PFAIL*	63	0		Power-fail message received output		
REFCLK	11	I	Module	Clock input. The recommended frequency and duty cycle are 33 MHz, $50\%\pm5\%$; 25 MHz to 33 MHz and $50\%\pm5\%$ can be tolerated.		

JTAG test port

TERMIN	TERMINAL			DECORIDEION		
NAME	NO.	1/0	FROM/TO	DESCRIPTION		
TCK	70	I	Module	JTAG test clock input		
TDI	69	1	Module	JTAG test data input		
TDO	68	0	Module	JTAG test data output		
TMS	71	1	Module	JTAG test mode select input		

reset port

TERMINAL						
NAME	NO.	I/O	FROM/TO	DESCRIPTION		
BINIT*	14	I	Module	Bus interface reset input. BINIT is an open-collector signal indicating that a bus interface reset is required		
BUSI*	17	I		Bus has been idle for longer than 1 µs, and reset is asserted by this module.		
REF	61	0		Futurebus+ reset filtered output		
REI	57	I		Futurebus+ reset input		
RST*	13	I	Module	Module power-up reset input. RST resets all logic; output signals go to their inactive states; 3-state outputs and bidirectionals go to the high-impedance state (for live-insertion considerations).		
SYSRESET*	15		Module	System reset input. SYSRESET* signal indicates that a system reset is required.		

Terminal Functions

Futurebus+ interface

TERMINAL		1/0	DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
ACI<1:0>	52,54	I	Futurebus+ arbitration condition input	
ACO<1:0>	53,55	0	Futurebus+ arbitration condition output	
API, AQI, ARI	44,47,49	I	Futurebus+ arbitration handshake input	
APO, AQO, ARO	45,48,50	0	Futurebus+ arbitration handshake output	
ASI	58	I	Futurebus+ address handshake input	
CENTMODE	26	0	Central-mode operation is in effect output	
CMPT*	41	0	Arbitration contest logic compete indication output. Connects to COMPETE and OEB on the competition transceiver.	
CN<7:0>, CNP	36,35,33,32,31, 29,28,27,37	I/O	Futurebus+ contest number and parity	
GA<4:0>*	77,76,75,74,73	I	Futurebus+ geographical address input	
LE*	40	0	Enable latch on competition transceiver output (1 = competition number latched)	
OEA	43	0	Enable TTL drivers on competition transceiver output	
WIN	39	I	Arbitration contest logic win indication input	

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1)	0.5 V to 7 V
Input voltage range, V _I	0.5 V to 7 V
Output voltage range, VO	0.5 V to 7 V
Continuous total power dissipation	See Dissipation Rating Table
Power dissipation	500 mW
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range	–65°C to 150°C
Case temperature for 10 seconds	

NOTE 1: All voltage values are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
PJM	1500 mW	12 mW/°C	960 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2		VCC	V
Low-level input voltage, V _{IL}	-0.5		8.0	V
Operating free-air temperature range, T _A	0		70	°C

SLLS125A - OCTOBER 1990 - REVISED NOVEMBER 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	MACRO	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IT} Input threshold voltage	IPI04LK	$V_I = V_{CC}$ or 0 V,		1.3		V
V _{IT+} Positive-going input threshold voltage	IPI09LK	$I_I = \pm 1 \mu A$,		1.6		V
V _{IT} Negative-going input threshold voltage	IPI09LK	IPI09LK		1.2		V
VOH High-level output voltage	OD MOUN	I _{OH} = -4 mA	3.7			V
V _{OL} Low-level output voltage	OPJ43LK	I _{OL} = 4 mA			0.5	V
VOH High-level output voltage	OD 1001 14	$I_{OH} = -8 \text{ mA}$	3.7			V
V _{OL} Low-level output voltage	OPJ83LK	$I_{OL} = 8 \text{ mA}$			0.5	V
VOH High-level output voltage	ODIANIA	I _{OH} = -4 mA	3.7			V
V _{OL} Low-level output voltage	OPI43LK	I _{OL} = 4 mA			0.5	V
V _{OL} Low-level output voltage	OPI42LK	$I_{OL} = 4 \text{ mA}$			0.5	V

macros

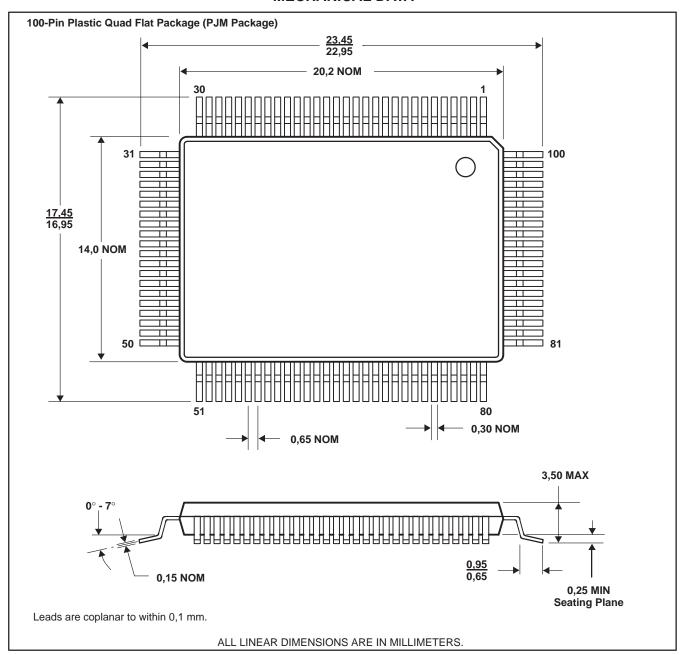

Table 1 lists the internal and external buffer macros used in the TFB2010 design. To use this table, find the pin of interest and note the macro name(s). If there is an entry only in the input macro column, the pin is an input. If there is an entry only in the output macro column, the pin is an output. If there is an entry in both columns, this is a 3-state bidirectional pin. The macro(s) are also listed in the electrical characteristics table.

Table 1. TFB2010 (ABC) Pin Names and Macro Numbers

PIN NAME	INPUT MACRO	OUTPUT MACRO
ACI<1:0>	IPI04LK	
ACO<1:0>		OPI43LK
API	IPI04LK	
APO		OPI43LK
AQI	IPI04LK	
AQO		OPI43LK
ARBERR<1:0>		OPI43LK
ARI	IPI04LK	
ARO		OPI43LK
ASI	IPI04LK	
BINIT*	IPI09LK	
BUSI*	IPI09LK	
CA<11:0>	IPI04LK	
CCE*	IPI04LK	
CD<7:0>	IPI04LK	OPJ83LK
CDP	IPI04LK	OPJ83LK
CENTMODE		OPI43LK
CLK	IPI04LK	
CMPT*		OPI43LK
CN<7:0>	IPI04LK	OPI43LK
CNP	IPI04LK	OPI43LK

PIN NAME	INPUT MACRO	OUTPUT MACRO
COE*	IPI04LK	
CWE*	IPI04LK	
GA<4:0>*	IPI04LK	
GR		OPI43LK
INT*		OPI42LK
LE*		OPI43LK
OEA		OPI43LK
PE	IPI04LK	OPI43LK
PFAIL*		OPI43LK
REF		OPI43LK
REFCLK	IPI04LK	
REI	IPI04LK	
RQ<1:0>	IPI04LK	
RST*	IPI09LK	
SYSRESET*	IPI09LK	
TCK	IPI04LK	
TDI	IPI04LK	
TDO		OPI43LK
TMS	IPI04LK	
WIN	IPI04LK	

MECHANICAL DATA

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated