APPLICATION MANUAL

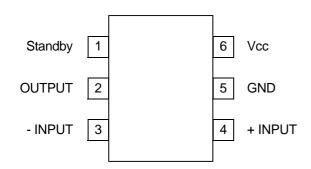
Single Video Amplifier TK15404M

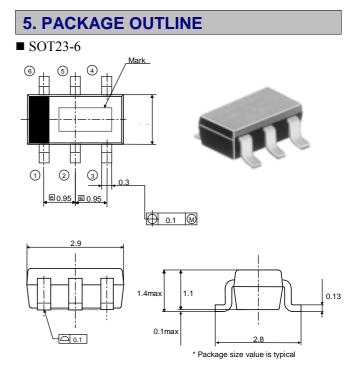
CONTENTS	
1 . DESCRIPTION	2
2 . FEATURES	2
3 . APPLICATIONS	2
4 . PIN CONFIGURATION	2
5 . PACKAGE OUTLINE	2
6 . BLOCK DIAGRAM	2
7 . ABSOLUTE MAXIMUM RATINGS	3
8 . ELECTRICAL CHARACTERISTICS	3
9 . TEST CIRCUIT	4
10. TYPICAL CHARACTERISTICS	4
11 . PIN DESCRIPTION	7
12 . APPLICATIONS INFORMATION	8
13 . NOTES	10
14. OFFICES	10

Single Video Amplifier TK15404M

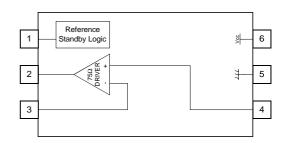
1. DESCRIPTION

Operating from a single +5V supply, the TK15404 is a single-channel video driver IC that takes a standard video signal as the analog input and provides a buffered analog output for driving a 150 Ω load (series 75 Ω resistor and 75 Ω cable load). The standard video input signal (1V_{P-P}) is typically amplified 6dB using external components to produce a 2V_{P-P} signal into an AC-coupled 150 Ω load. During standby (Pin 1 grounded), the TK15404 consumes only 120 μ W of power. Nominal power dissipation (no input) is typically 32mW.


2. FEATURES


- Gain Set by External Components (6dB typ.)
- Internal 75Ω Driver
- Active High ON/OFF Control with Internal Pull-up
- Low Standby Current (typ. $I_{CCS} \leq 25 \mu A$)
- Single +5V Power Supply Operation
- Very Small SOT23-6 Package

3. APPLICATIONS


- Video Equipment
- Digital Cameras
- CCD Cameras
- TV Monitors
- Video Tape Recorders
- LCD Projectors

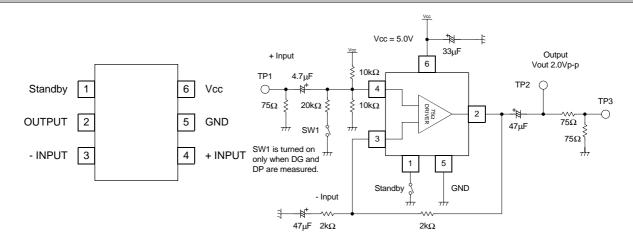
4. PIN CONFIGURATION

6. BLOCK DIAGRAM

GC3-H041

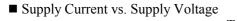
7. ABSOLUTE MAXIMUM RATINGS

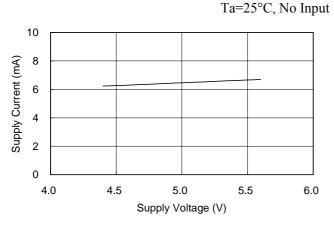
				$T_a=25^{\circ}C$
Parameter	Symbol	Rating	Units	Conditions
Supply Voltage	V _{CC}	6.0	V	
Power Dissipation	P _D	150	mW	Note
Storage Temperature Range	T _{stg}	$-55 \sim +150$	°C	
Operating Temperature Range	T _{OP}	-25 ~ +75	°C	
Input Frequency	f _{MAX}	~ 100	MHz	

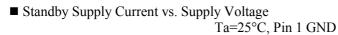

Note: P_D must be decreased at the rate of $1.2 \text{mW/}^{\circ}\text{C}$ for operation above 25°C .

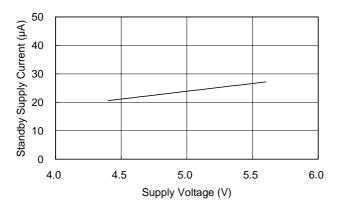
8. ELECTRICAL CHARACTERISTICS

				V _{CC} =5	.0V, T _a =2	5° C, V_{IN} =1.0 V_{P-P} , R_{L} =150 Ω
Parameter	Symbol	Value			Conditions	
		MIN	ТҮР	MAX	– Units	Conditions
Operating Voltage Range	V _{OP}	4.5	5.0	5.5	V	
Supply Current	I _{CC}		6.3	8.5	mA	No Input
Standby Supply Current	I _{CCS}		24.0	50.0	μA	Pin 1 Grounded
Standby Terminal Current	I _{os}		24.0	50.0	μA	Pin 1 Standby mode
Threshold Voltage	V			0.3	v	Pin 1 Operating to
(High to Low)	V_{THL}			0.5	v	Standby mode
Threshold Voltage	V_{TLH}	1.8			v	Pin 1 Standby to
(Low to High)	♥ TLH	1.0			v	Operating mode
Voltage Gain	G _v	5.7	6.0	6.3	dB	fin=1.0MHz (Note)
Frequency Response	fr		0.0		dB	fin=1.0MHz / 5.0MHz
			-0.6		dB	fin=1.0MHz/10MHz
Total Harmonic Distortion	THD		0.2	1.0	%	fin=1.0kHz
Maximum Output Voltage	V _{OUT(MAX)}	1.0	1.2		Vrms	THD=10% point
Signal to Noise Ratio	S/N		-70		dB	Pedestal signal
Differential Gain	DG	-3.0		+3.0	%	Staircase wave input
Differential Phase	DP	-3.0		+3.0	deg	Staircase wave Input
Open Circuit Voltage Gain	G _{vo}		40		dB	
Frequency Bandwidth	BW		20		MHz	
Slew Rate	SR		70		V/µS	
Input Capacitance	C _{IN}		9		pF	
Input Resistance	R _{IN}		1.6		MΩ	

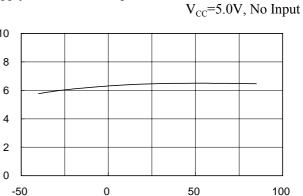

Note: Set by external components.

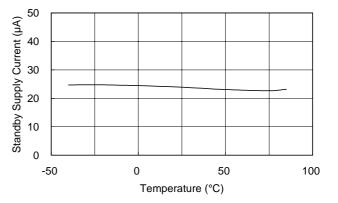

9. TEST CIRCUIT

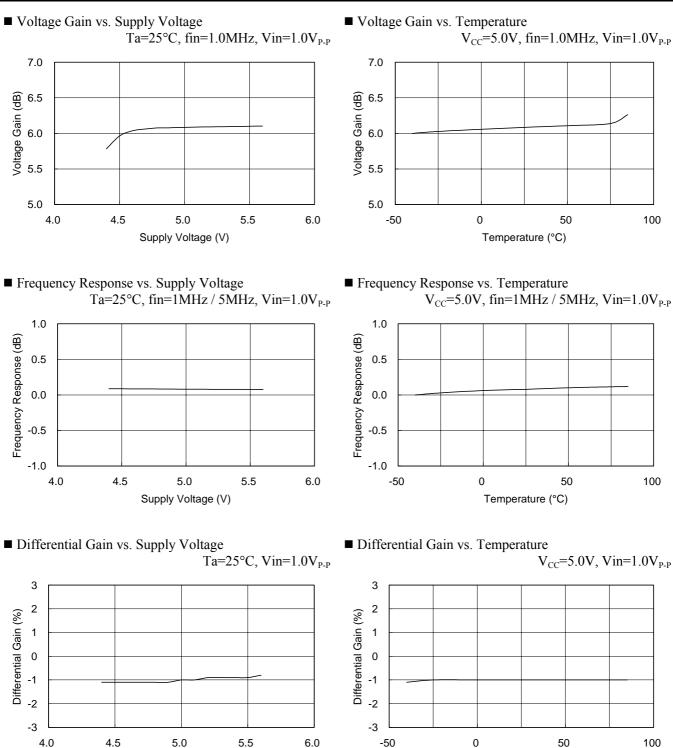



Supply Current (mA)

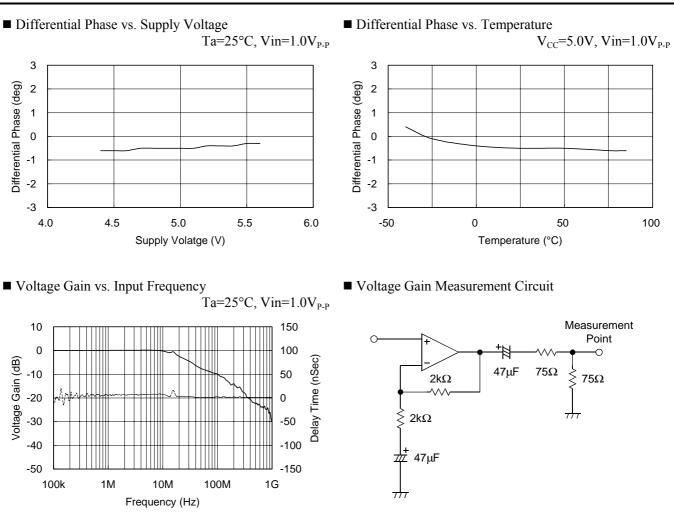
10. TYPICAL CHARACTERISTICS

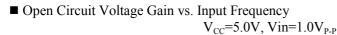


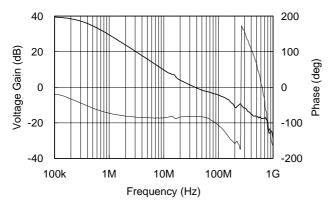

10


■ Supply Current vs. Temperature

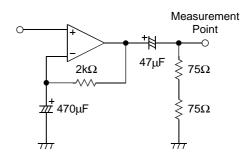
■ Standby Supply Current vs. Temperature V_{CC} =5.0V, Pin 1 GND






Supply Voltage (V)

Temperature (°C)


RETOKO

■ Open Circuit Voltage Gain Measurement Circuit

11. PIN DESCRIPTION

Pin No.	Pin Description	Internal Equivalent Circuit	Description
1	STANDBY		Standby Logic Terminal. The device is in the standby mode when Pin 1 is connected to a Low level. The device is in the operating mode when Pin 1 is connected to a High level or Open.
2	OUTPUT		Output Terminal. The output is available to drive a $75\Omega + 75\Omega$ load.
3 4	-INPUT +INPUT		Pin 3: Inverting Signal Input Terminal. Pin 4: Non-Inverting Signal Input Terminal.
5	GND	-	GND Terminal.
6	V _{CC}	-	Power Supply Terminal.

12. APPLICATIONS INFORMATION

Unless otherwise shown in the description, the examples are explained with the application of $a \pm$ power supply.

12-1. About Amplitude Restrictions

In certain applications, the output voltage is limited by the input voltage.

This is explained in the outline below using the internal equivalent circuit shown in Figure 1.

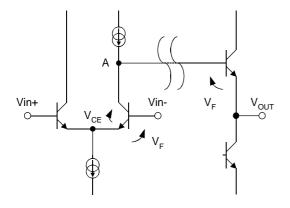


Figure 1: The internal equivalent circuit

From Figure 1, if the voltage VA at A point is shown from the input side and the output side respectively, the expression is as follows.

$$V_{A} \ge V_{in} - V_{F} + V_{CE} \tag{1}$$

$$V_{\rm A} = V_{\rm out} + V_{\rm F} \tag{2}$$

Thus

$$V_{out} - V_{in} + 2V_F \ge V_{CE}$$
(3)

Substitution of $V_F = 0.7V$ into (3) gives

$$V_{out} - V_{in} + 1.4V \ge V_{CE} \tag{4}$$

Depending on the relationship between Vout and Vin, it may become impossible to secure the Saturation voltage VCE (about 0.3V) of the inverting input transistor; as a result, the linearity of the input and output voltage will collapse.

An example of this application is shown in Figure 2 with the preventive measures explained below.

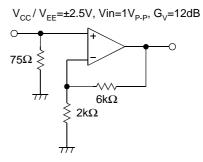


Figure 2: Application Example

In Figure 2, if -0.5V (the minimum value of input amplitude) is given to the input, the output voltage will be set to -2.0V. Substitution of Vin and Vout into (4) gives

$$V_{out} - V_{in} + 1.4V = -0.1V \le V_{CE}(0.3V)$$
 (5)

This shows that the transistor of the inverting input is operating in the saturation region; for this reason, it becomes impossible to keep linearity of the input-to-output voltage. As shown in Figure 3, there is a method of providing V_{REF} as a preventive measure.

It is possible to raise the output voltage by setting up V_{REF} appropriately, and avoid amplitude restrictions.

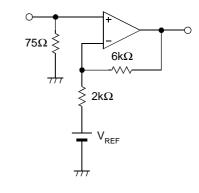


Figure 3: Example of preventive measures

If the input voltage and V_{REF} are assumed to be -0.5V, the output voltage also becomes -0.5V.

This result is substituted into expression (4)

$$V_{out} - V_{in} + 1.4V = 1.4V \ge V_{CE}(0.3V)$$
 (6)

As a result, the saturation voltage of the inverting input transistor is secured, and the amplitude limitation can be avoided.

However, it is necessary to pay attention to the dynamic range, especially when using this IC with a low voltage power supply. This method may be used to control the output bias voltage.

12-2. Use as a Buffer Amplifier

The gain of this operational amplifier IC can be changed with the external parts.

When this IC is used as a feedback-type buffer amplifier and an oscillation phenomenon arises, insert a feedback resistor of approximately $2k\Omega$.

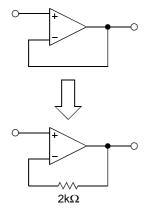


Figure 4: Example of use as a buffer amplifier

Usually, a feedback amplifier oscillates for the following reason: the internal impedance of the output terminal and the internal capacitance of the input terminal constitute a low pass filter. Phase delay occurs with a low pass filter and oscillation results.

By adding a feedback resistor to the output impedance, the cutoff frequency of the low pass filter becomes low. For this reason, the amount of feedback at the oscillation frequency is set to 0dB or less, and the oscillation stops.

13. NOTES

■ Please be sure that you carefully discuss your planned purchase with our office if you intend to use the products in this application manual under conditions where particularly extreme standards of reliability are required, or if you intend to use products for applications other than those listed in this application manual.

• Power drive products for automobile, ship or aircraft transport systems; steering and navigation systems, emergency signal communications systems, and any system other than those mentioned above which include electronic sensors, measuring, or display devices, and which could cause major damage to life, limb or property if misused or failure to function.

• Medical devices for measuring blood pressure, pulse, etc., treatment units such as coronary pacemakers and heat treatment units, and devices such as artificial organs and artificial limb systems which augment physiological functions.

• Electrical instruments, equipment or systems used in disaster or crime prevention.

■ Semiconductors, by nature, may fail or malfunction in spite of our devotion to improve product quality and reliability. We urge you to take every possible precaution against physical injuries, fire or other damages which may cause failure of our semiconductor products by taking appropriate measures, including a reasonable safety margin, malfunction preventive practices and fire-proofing when designing your products.

■ This application manual is effective from Aug 2001. Note that the contents are subject to change or discontinuation without notice. When placing orders, please confirm specifications and delivery condition in writing.

■ TOKO is not responsible for any problems nor for any infringement of third party patents or any other intellectual property rights that may arise from the use or method of use of the products listed in this application manual. Moreover, this application manual does not signify that TOKO agrees implicitly or explicitly to license any patent rights or other intellectual property rights which it holds.

■ None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.

14. OFFICES

If you need more information on this product and other TOKO products, please contact us.

■ TOKO Inc. Headquarters 1-17, Higashi-yukigaya 2-chome, Ohta-ku, Tokyo, 145-8585, Japan TEL: +81.3.3727.1161 FAX: +81.3.3727.1176 or +81.3.3727.1169 Web site: http://www.toko.co.jp/

■ TOKO America Web site: http://www.toko.com/

■ TOKO Europe Web site: http://www.tokoeurope.com/

TOKO Hong Kong Web site: http://www.toko.com.hk/

■ TOKO Taiwan Web site: http://www.tokohc.com.tw/

■ TOKO Singapore Web site: http://www.toko.com.sg/

■ TOKO Seoul Web site: http://www.toko.co.kr/

■ TOKO Manila Web site: http://www.toko.com.ph/

■ TOKO Brazil Web site: http://www.toko.com.br/

TO BUILD THE QUALITY RELIED BY COSTOMERS
Semiconductor Division

YOUR DISTRIBUTOR