Intelligent Double Low-Side Switch 2 x 2 A

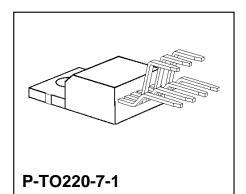
Bipolar IC

Features

- Double low-side switch, 2 x 2 A
- Power limitation
- Overtemperature shutdown
- Status monitoring
- Shorted-load protection
- Reverse polarity protection
- Integrated clamp Z-Diodes
- Voltage proof up to 70 V
- Temperature range 40 to 125 °C

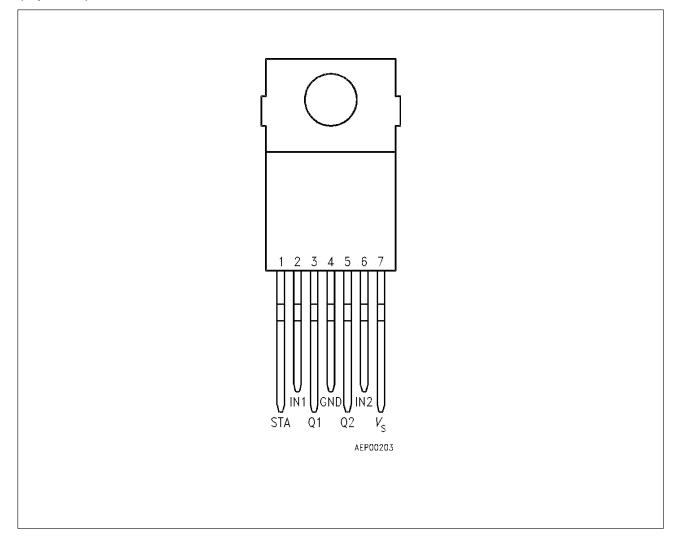
Туре	Ordering Code	Package
TLE 4211	Q67000-A8118	P-TO220-7-1

Application

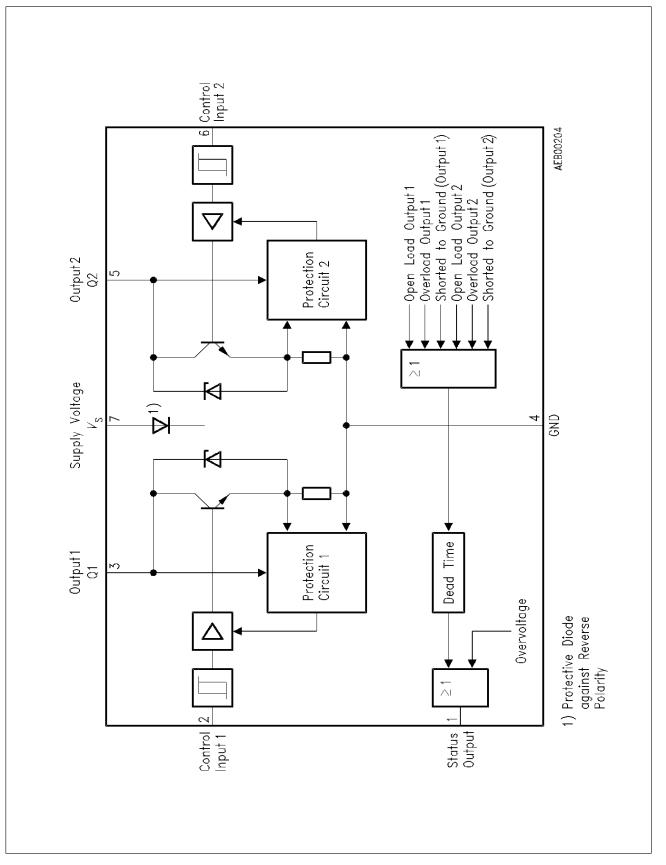

Applications in automotive electronics require intelligent power switches activated by logic signals, which are also shorted-load protected and provide error feedback.

The IC contains two of these power switches (low-side switch). In case of inductive loads the integrated power Z-diodes clamp the discharging voltage.

Through TTL signals at the control inputs (active low) both switches can be activated independently of one another. If one of the inputs is not in use, it must be applied to high potential.


The status output (open collector) signals the following malfunctions through low potential:

- Overload,
- Open load,
- Shorted load to ground,
- Overvoltage.


Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	STA	Status output (open collector) for both outputs; indicates overload, open load and shorted load to ground as well as overvoltage at pin 7. In case of malfunction the status output is switched to low after a delay time (except overvoltage).
2	IN1	Control input 1 (TTL-compatible) activates output transistor 1 in case of low-potential.
3	Q1	Output 1 Shorted-load protected, open collector output with 36 V clamp Z-diode to ground.
4	GND	Ground Wiring must be designed for a max. short-circuit current (2 x 3.5 A).
5	Q2	Output 2 Shorted-load protected, open collector output with 36 V clamp Z-diode to ground.
6	IN2	Control input 2 (TTL-compatible) activates output transistor 2 in case of low-potential.
7	Vs	Supply voltage In case of overvoltage at this pin large sections of the circuit are deactivated. The status output indicates the malfunction without delay time.

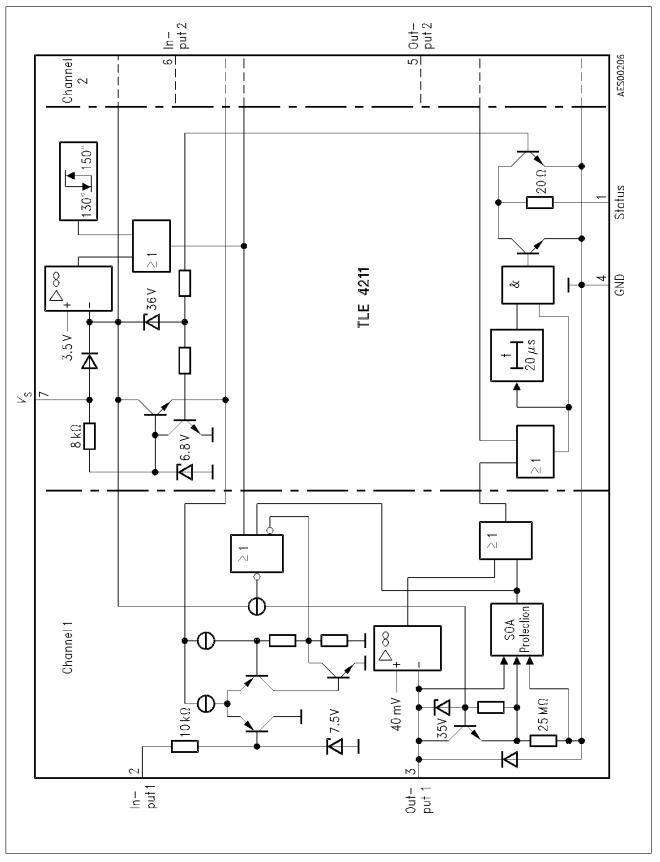
Block Diagram

Circuit Description

Input Circuits

The control inputs comprise TTL-compatible Schmitt triggers with hysteresis. Driven by these stages the inverting buffer amplifiers convert the logic signal for driving the NPN power transistors.

Switching Stages


The output stages comprise NPN power transistors with open collectors. Since the protective circuit allocated to each stage limits the power dissipation, the outputs are shorted-load protected to the supply voltage throughout the entire operating range. Positive voltage peaks, which occur during the switching of inductive loads, are limited by the integrated clamp Z-diodes.

Monitoring and Protective Functions

The outputs are monitored for open load, overload, and shorted load to ground (**see table below**). In addition, large sections of the circuit are de-activated in case of excessive supply voltages $V_{\rm S}$. Linked via OR gate the information regarding these malfunctions effects the status output (open collector, active low). An internally determined delay time applied to all malfunctions but overvoltage prevents the output of messages in case of short-term malfunctions. Furthermore, a temperature protection circuit prevents thermal overload. An integrated reverse diode protects the supply voltage $V_{\rm S}$ against reverse polarities. Similarly the load circuit is protected against reverse polarities within the limits established by the maximum ratings (no shorted load at the same time!). At supply voltages below the operating range an undervoltage detector ensures that neither the status nor the outputs are activated.

Status Output (L = Error)								
	Undervoltage	Operati	Overvoltage					
		V _I = L (active)	V _I = H (passive)					
Normal function	Н	н	Н	L				
Overload	Н	L	Н	L				
Open load	Н	L	н	L				
Shorted load to ground	Н	L	L	L				

Semiconductor Group

Circuit Diagram

Semiconductor Group

Absolute Maximum Ratings

$T_{\rm A}$ = -40 to 125 °C

Parameter	Symbol	Limit	Unit	
		min.	max.	

Voltages

Supply voltage (pin 7) ¹⁾	Vs	- 45	45	V
Supply voltage (pin 7) $t \le 500$ ms	V _S	-	70	V
Input voltage (pin 2; pin 6)		- 5	45	V
Output voltage (pin 1)	Vo	- 0.3	45	V

Currents

Switching current (pin 3; pin 5)	IQ	limited	internally	
Current with reverse polarity (pin 3; pin 5) $T_{\rm C} \le 85 ^{\circ}{\rm C}$	I_{Q}	- 2.2	_	А
Output current (pin 1)	I _Q	_	10	mA
Max. current at inductive load	I _Q	_	see Diagram	
Junction temperature Storage temperature	$T_{ m j} \ T_{ m stg}$	- - 50	150 150	°C ℃

Operating Range

Supply voltage	Vs	5.6 ²⁾	20	V
Supply voltage slew rate	$dV_{\rm S}/dV$	- 1	1	V/µs
Ambient temperature	T _A	- 40	125	°C
Thermal resistance junction to case junction to ambient	$R_{ m th~JC} \ R_{ m th~JA}$		4 65	K/W K/W

¹⁾ Refer to monitoring and protective functions ²⁾ Lower limit = 4.6 V, if previously $V_{\rm S}$ greater than 5.6 V (turn-on hysteresis)

Characteristics

 $V_{\rm S}$ = 6 to 18 V and $T_{\rm A}$ = – 40 to 125 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General Characteristics

I _S I _S	_	3.5 100	10 180	mA mA	$V_{\rm I} = V_{\rm I} > V_{\rm IH}$ $V_{\rm I} = V_{\rm I} < V_{\rm IL}$
$V_{ m SO}$	34	36	42	V	$I_{\rm O} = 5$ mA; $V_{\rm O} < 0.4$ V
V_{QU}	_	40	_	mV	$I_{\rm O} = 5$ mA; $V_{\rm O} < 0.4$ V
I _{QU}	_	50	120	mA	$V_{\rm Q} = V_{\rm QU}$
I _{QU}	_	_	250	mA	$V_{\rm Q1} = V_{\rm Q2} = V_{\rm QU}$
	I _S V _{SO} V _{QU} I _{QU}	$I_{S} - I_{SO} - I_{O} - I_{$	$I_{\rm S}$ - 100 $V_{\rm SO}$ 34 36 $V_{\rm QU}$ - 40 $I_{\rm QU}$ - 50	I_{S} - 100 180 V_{SO} 34 36 42 V_{QU} - 40 - I_{QU} - 50 120	I_{S} - 100 180 mA V_{SO} 34 36 42 V V_{QU} - 40 - mV I_{QU} - 50 120 mA

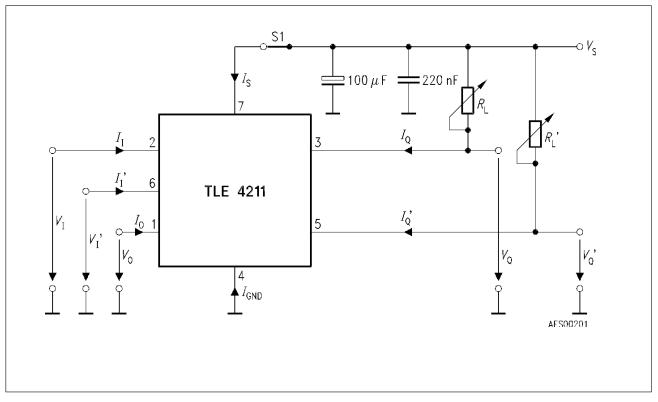
Logic

Control input H-input voltage L-input voltage	$V_{IH} = V_{IL}$	- 0.7	1.7 1.1	2.4 _	V V	
Hysteresis of input voltage	ΔV_1	_	0.6	_	V	_
H-input current L-input current	$I_{\rm IH}$ - $I_{\rm IL}$	_		10 10	μΑ μΑ	$V_1 = 5 V$ $V_1 = 0.5 V$
Status output (open coll.) L-saturation voltage	$V_{ m OSat}$	_	_	0.4	V	<i>I</i> ₀ = 5 mA
Status delay time	t _{dS}	12	20	30	μs	1)

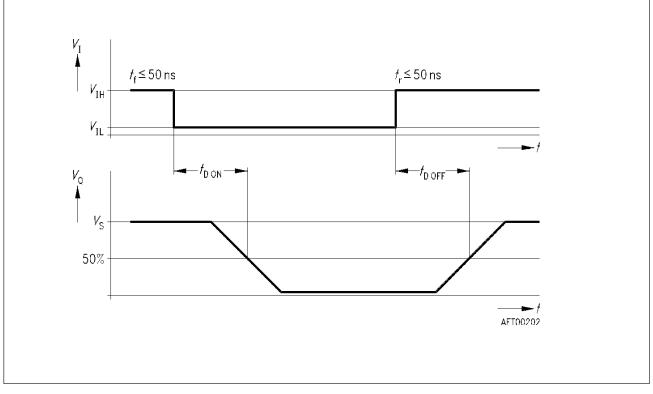
Period from the beginning of the disturbance at one channel (exception: overvoltage) until the 50 % value of the status switching edge is reached.

Characteristics (cont'd)

$V_{\rm S}$ = 6 to 18 V and $T_{\rm A}$ = – 40 to 125 °C

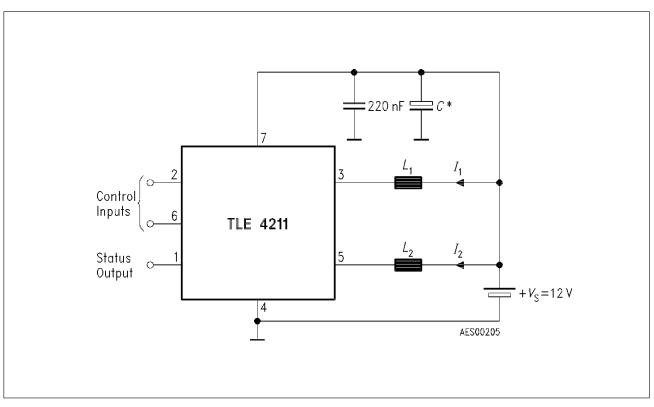

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Power Output


Saturation voltage	V_{QSat}	_	0.6	0.8	V	$I_{\rm Q}$ = 1.6 A; $V_{\rm I}$ < $V_{\rm IL}$; $T_{\rm j}$ = 25 °C
Leakage current	I _Q	_	_	300	μA	$V_{\rm Q}$ = 6 V; $V_{\rm I}$ > $V_{\rm IH}$
Switch-ON time Switch-OFF time	t _{D ON} t _{D OFF}		0.5 2.5	5 10	μs μs	see Timing Diagram; $I_{\rm Q} = 1 {\rm A}$
Output voltage Negative clamp	$-V_{\rm QF}$	_	1.4	1.8	V	$I_{\rm Q} = -2.0 \ {\rm A}$

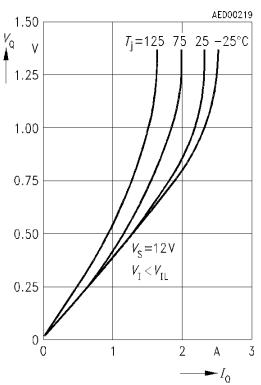
Power Clamp Diode ($V_{\rm S}$ = 42 V; $S_{\rm 1}$ open)

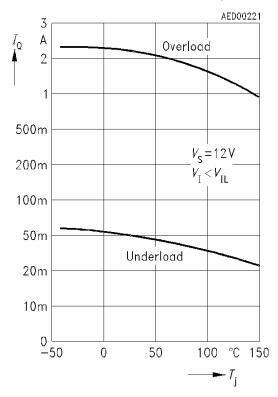
Output voltage positive clamp	V_{QZ}	34	36	40	V	$I_{\rm Q} = 0.1 {\rm A}$
Serial resistance	r _z	—	2	_	Ω	0 A < I _Q < 2 A



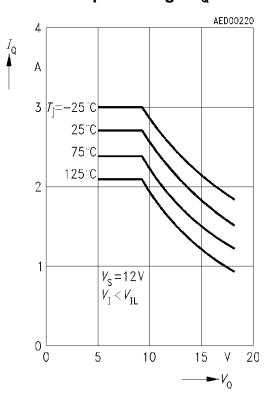
Test Circuit

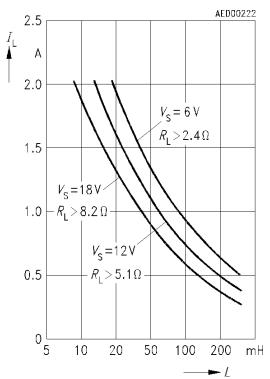
Timing Diagram


Semiconductor Group


Application Circuit

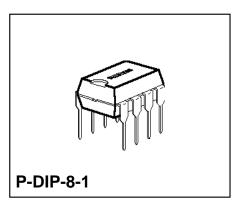
 C^* is to be dimensioned such that e.g. in case of a battery voltage failure the maximum ratings of the IC are not exceeded by the recirculation energy L_1 , L_2 .

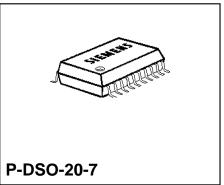



Status Signal Threshold versus Chip Temperature T_{j}

Shorted Load Current I_{Q0} versus Output Voltage V_{Q}

Maximum Load Current I_{L} versus Load Inductance L




TLE 4214

Bipolar IC

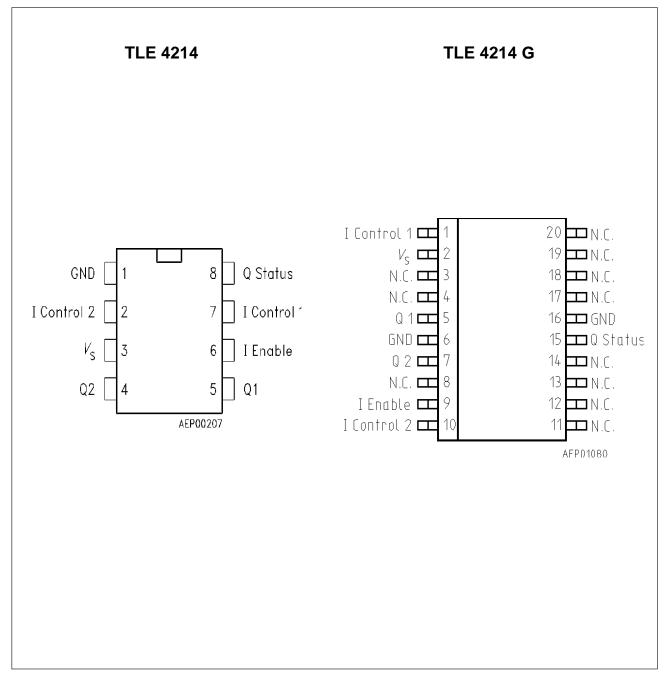
Features

- Double low-side switch, 2 x 0.5 A
- Power limitation
- Overtemperature shutdown
- Overvoltage shutdown
- Status monitoring
- Shorted-load protection
- Integrated clamp diodes
- Temperature range 40 to 125 °C

Туре	Ordering Code	Package
TLE 4214	Q67000-A8183	P-DIP-8-1
TLE 4214 G	Q67000-A9094	P-DSO-20-7 (SMD)

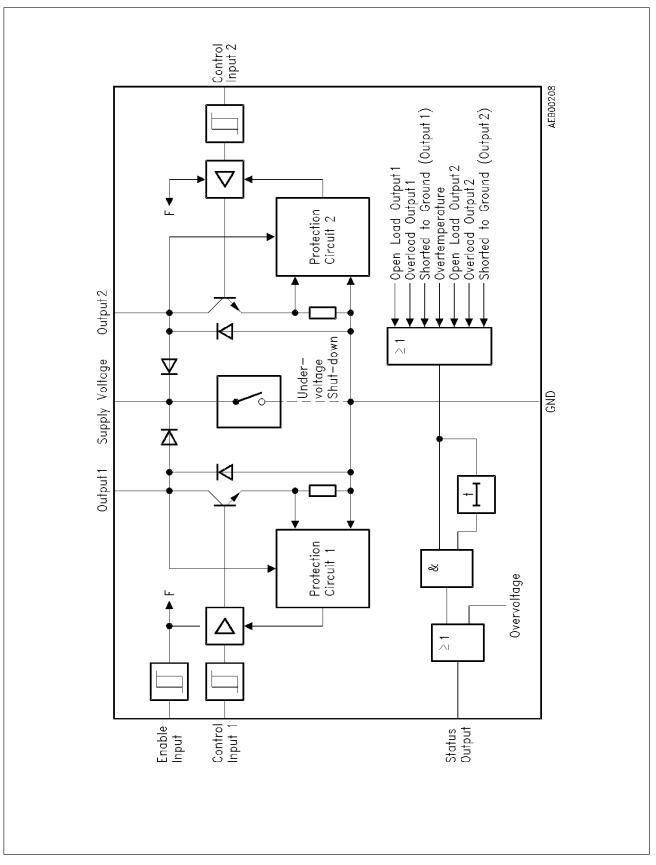
Application

Applications in automotive electronics require intelligent power switches activated by logic signals, which are also shorted-load protected and provide error feedback.


The IC contains two of these power switches (low-side switches). In case of inductive loads the integrated clamp diodes clamp the discharging voltage. If a "high" signal is applied to the enable input both switches can be activated independently of one another through TTL signals at the control inputs (active high). The high impedance inputs and must therefore not be left unconnected, but should always be connected to a fixed potential (noise immunity).

The status output (open collector) signals the following malfunctions through high potential:

- Overload,
- Open load,
- Shorted load to ground,
- Overvoltage,
- Overtemperature.


Pin Configuration

(top view)

Pin Definitions and Functions

TLE 4214 G	TLE 4214	Symbol	Function
Pin No.	Pin No.		
6, 16	1	GND	Ground Design wiring for the max. short-circuit current (2 x 1 A)
10	2	IN2	Control input 2 (TTL compatible) activates the output transistor 2 in case of high potential
2	3	Vs	Supply voltage In case of overvoltage at this pin large sections of the circuit are deactivated. The status output indicates this malfunction without delay time.
7	4	Q2	Output 2 Shorted load protected, open collector output for currents up to 0.5 A, with clamping diodes to supply voltage.
5	5	Q1	Output 1 Shorted load protected, open collector output for currents up to 0.5 A, with clamping diodes to supply voltage.
9	6	ENA	Enable input, active high
1	7	IN1	Control input 1 (TTL-compatible) activates output transistor 1 in case of high potential
15	8	STA	Status output (open collector) for both outputs; indicates overtemperature, overload, open load and shorted load to ground as well as overvoltage at pin 3. Is switched to high after a defined delay time in case of malfunction (except: overvoltage)
3, 4, 8, 11 14, 17 20		N. C.	Not connected

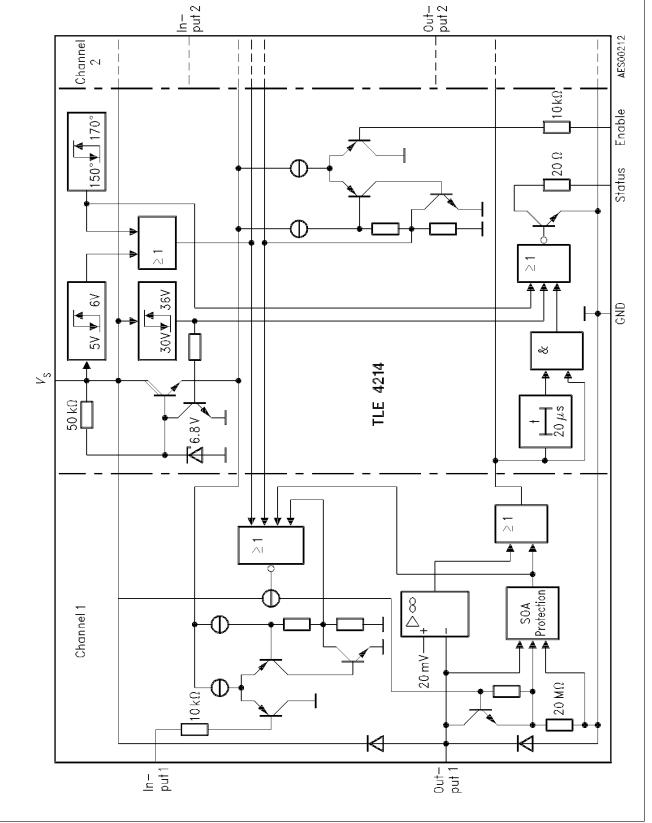
Block Diagram

Circuit Description

Input Circuits

The control inputs and the enable input consist of TTL-compatible Schmitt triggers with hysteresis. Driven by these stages the buffer amplifiers convert the logic signal necessary for driving the NPN power transistors.

Switching Stages


The output stages consist of NPN power transistors with open collectors. Since the protective circuit allocated to each stage limits the power dissipation, the outputs are shorted-load protected to the supply voltage throughout the entire operating range. Positive voltage peaks, which occur during the switching of inductive loads, are limited by the integrated clamp diodes.

Monitoring and Protective Functions

During the activated status the outputs are monitored for open load, overload, and shorted load to ground (see table below). In addition, large sections of the circuit are shut down in case of excessive supply voltages $V_{\rm s}$. Linked via OR gate the information regarding these malfunctions effects the status output (open collector, active high). An internally determined delay time applied to all malfunctions but overvoltage prevents the output of messages in case of short-term malfunctions. Furthermore, a temperature protection circuit prevents thermal overload. If overload occurs, the outputs are protected according to the safe operating area (SOA) mode (see diagram). If voltage and current are outside the SOA, the outputs oscillate to reduce the power dissipation. The switching frequency depends on the internal delay time and the external load (inductances and capacitances). If the frequency is low, the status output may follow the oscillation. An integrated reverse diode protects the supply voltage $V_{\rm S}$ against reverse polarities. Similarly the load circuit is protected against reverse polarities within the limits established by the maximum ratings (no shorted load at the same time!). At supply voltages below the operating range an undervoltage detector ensures that neither the status nor the outputs are activated. At supply voltages below the operating range the output stages are de-activated.

Status Output (H = Error)								
	Undervoltage	Operati	Overvoltage					
	> 3.5 V	V _I = L (passive)	V ₁ = H (active)	_				
Normal function	L	L	L	Н				
Overload	L	L	н	Н				
Open load	L	L	н	Н				
Shorted load to ground	L	Н	н	Н				
Overtemperature	L	н	н	Н				

k0 AES00212 AES00212

Circuit Diagram

Semiconductor Group

Absolute Maximum Ratings

 $T_{\rm j}$ = - 40 to 150 °C

Parameter	Symbol	Limit	Unit	
		min.	max.	

Voltages

V _S	-	70	V
Vs	– 1.3	40	V
V_1	– 13	40	V
Vo	- 0.3	40	V
V_{Q}	- 0.3	+ V _S	V
	$ \begin{array}{c c} V_{S} \\ V_{S} \\ V_{I} \\ V_{O} \\ V_{Q} \end{array} $	$V_1 = -13$ $V_0 = -0.3$	$\begin{array}{c ccccc} V_{\rm S} & & -1.3 & & 40 \\ V_{\rm I} & & -13 & & 40 \\ V_{\rm O} & & -0.3 & & 40 \end{array}$

Currents

Output current (switching stages)	IQ	internally limited	-	_
Current with reverse polarity, $t < 0.1$ s	IQ	- 0.7	_	A
Output current positive clamp		_	0.7	A
Ground current		- 1.4	2.0	A
Output current (status output)	I _O	-	10	mA
Junction temperature Storage temperature	$T_{ m j} \ T_{ m stg}$	- - 50	150 150	°C °C

Operating Range

Supply voltage	Vs	6 ¹⁾	25	V
Supply voltage slew rate	$\mathrm{d}V_\mathrm{S}/\mathrm{dt}$	- 1	1	V/μs
Output current (switching stages) Input voltage Output current (status output)	$\begin{matrix} I_{\rm Q} \\ V_{\rm I}, V_{\rm F} \\ I_{\rm O} \end{matrix}$	- 0.5 - 5 0	0.5 32 5	A V mA
Ambient temperature	T _A	- 40	125	°C

¹⁾ Lower limit = 5 V, if previously $V_{\rm S}$ greater than 6 V (turn-on hysteresis)

Absolute Maximum Ratings (cont'd)

 $T_{\rm j}$ = - 40 to 150 °C

Parameter		Symbol	Lin	Unit	
			min.	max.	
Supply voltage while shorted load	TLE 4214 TLE 4214 G	V _S V _S		16 15	V V
Thermal resistance junction to ambient	TLE 4214 TLE 4214 G	$R_{ m th~JA} \ R_{ m th~JA}$		91 77	K/W K/W

Characteristics

 $V_{\rm S}$ = 6 to 16 V (typ. $V_{\rm S}$ = 12 V); $T_{\rm j}$ = - 40 to 150 °C (typ. $T_{\rm j}$ = 25 °C)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General Characteristics

Quiescent current Supply voltage	I _S I _S	_	2 35	4 50	mA mA	$V_{\rm F} < V_{\rm FL}$ $V_{\rm I} = V_{\rm I} > V_{\rm IH}, V_{\rm F} > V_{\rm FH}$
Supply overvoltage shutdown threshold	V _{SO}	30	37	42	V	$V_{\rm L} = 5 \text{ V}; V_{\rm O} > 4.5 \text{ V}$
Hysteresis of supply overvoltage shutdown threshold	$\Delta V_{ m SO}$	4	6	9	V	V _L = 5 V; V _O > 4.5 V
Open load error threshold voltage	V _Q	5	20	50	mV	$V_{\rm L} = 5 \text{ V}; V_{\rm O} > 4.5 \text{ V}$
Open load error threshold current	I _{QU}	1	_	40	mA	$V_{\rm Q} = V_{\rm QU}$
Open load error threshold current for both channels active	I _{QU}	-	_	80	mA	$V_{\rm Q1} = V_{\rm Q2} = V_{\rm QU}$

 $V_{\rm S}$ = 6 to 16 V (typ. $V_{\rm S}$ = 12 V); $T_{\rm j}$ = -40 to 150 °C (typ. $T_{\rm j}$ = 25 °C)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

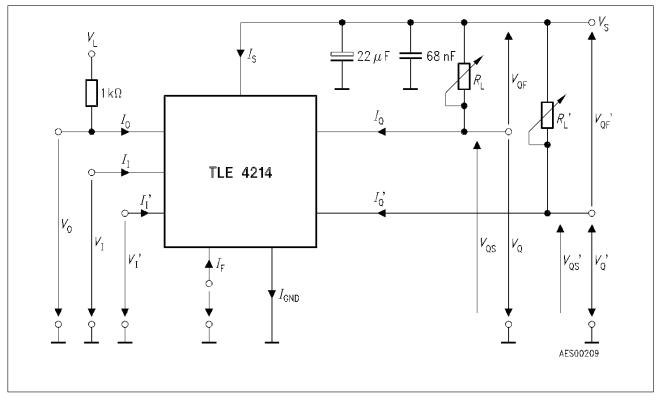
Logic

Control inputs H-input voltage threshold L-input voltage threshold	$V_{ m IH} \ V_{ m IL}$	1.3 0.9	1.8 1.2	2.1 1.5	V V	
Hysteresis of input voltage	ΔV_{1}	0.2	0.6	1.0	V	_
H-input voltage threshold L-input voltage threshold	$V_{FH} \ V_{FL}$	1.6 1.4	2.1 1.8	2.7 2.3	V V	
Hysteresis of input voltage	ΔV_{F}	0.1	0.3	0.7	V	_
H-input current L-input current	$I_{\rm IH}$ - $I_{\rm IL}$	0 0	_	10 10	μΑ μΑ	$V_1 = 5 V$ $V_1 = 0.5 V$

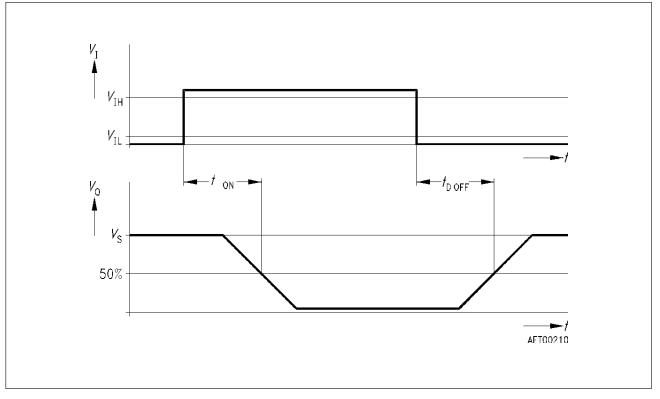
Status Output (open collector)

L-saturation voltage	V_{QSat}	0.1	0.2	0.4	V	$I_{\rm O} = 5 \text{ mA}$
Status delay time	t _{dS}	8	20	32	μs	1)

Period from the beginning of the disturbance at one channel (exception: overvoltage) until the 50 % value of the status switching edge is reached.

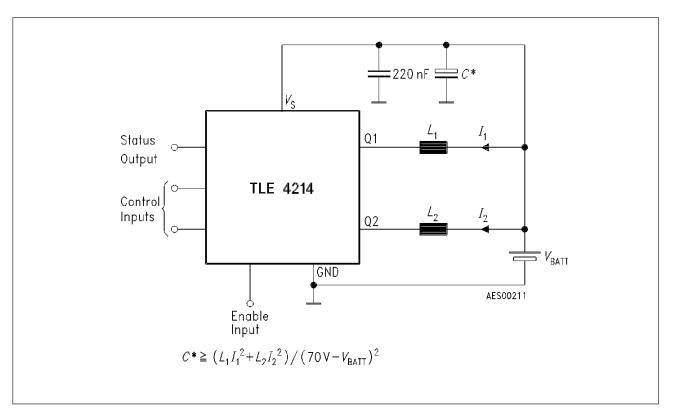

Characteristics (cont'd)

 $V_{\rm S}$ = 6 to 16 V (typ. $V_{\rm S}$ = 12 V); $T_{\rm j}$ = - 40 to 150 °C (typ. $T_{\rm j}$ = 25 °C)

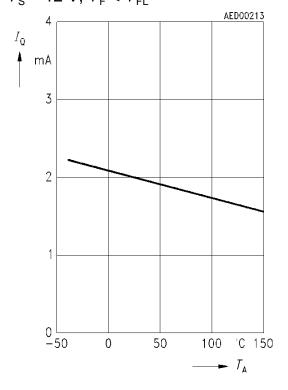

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Switching Stages

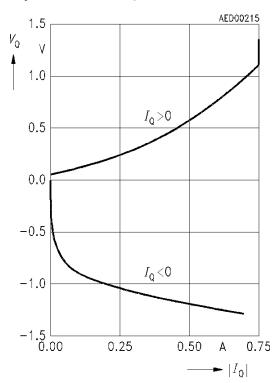
Saturation voltage	V_{QSat}	-	0.6	0.8	V	$I_{\rm Q} = 0.5 \text{ A}; V_{\rm I} > V_{\rm IH};$
Saturation voltage	V_{QSat}	-	45	100	mV	$V_{\rm F} > V_{\rm FH}$ $I_{\rm Q} = 50$ mA; $V_{\rm I} > V_{\rm IH}$; $V_{\rm F} > V_{\rm FH}$
Output current Leakage current	I _Q I _Q	0.5 - 5	_	50	Α μΑ	$V_{\text{QSat}} = 0.8 \text{ V}; V_{\text{I}} > V_{\text{IH}}$ $V_{\text{Q}} = 6 \text{ V}; V_{\text{I}} < V_{\text{IL}}$
Switch-ON time Switch-OFF time	t _{D ON} t _{D OFF}	0.2 0.2	0.5 2	5 5	μs μs	$I_{\rm Q} = 0.5$ A see Timing $I_{\rm Q} = 0.5$ A Diagram
Forward voltage of substrate diode Forward voltage of clamp diode	$V_{ m QS}$ $V_{ m QF}$	_	1.3 1.3	1.7 1.7	V V	$I_{Q} = -0.5 \text{ A}$ t < 0.1 s $I_{Q} = 0.5 \text{ A}$ t < 0.1 s
Leakage current of clamp diode	$-I_{\rm QF}$	_	_	5	μA	$V_{\rm Q}$ = 0 V; $V_{\rm I} < V_{\rm IL}$



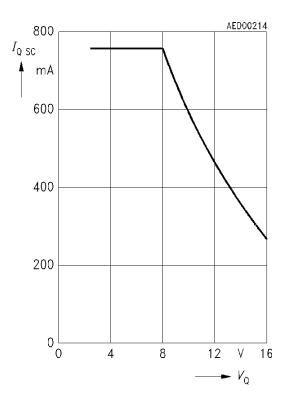
Test Circuit


Timing Diagram

Semiconductor Group



Application Circuit

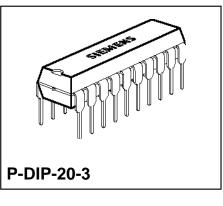

Quiescent Current I_s versus Ambient Temperature T_A in the OFF-Status $V_S = 12 \text{ V}; V_F < V_{FI}$

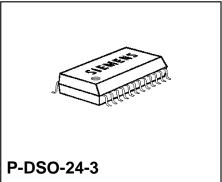
Output Voltage V_{Q} versus Output Current V_{S} = 12 V; $V_{I} > V_{IH}$

Shorted Load Current I_{Q0} versus Output Voltage V_{Q}

Maximum permissible output currents, being the result of the typical thermal power dissipation in a **P-DIP-8-1** package, for three operating modes.

- ΔT : Difference between junction and ambient temperature $(T_j T_A)$ [K].
- *I*_S: Max. output current (steady current) per channel.

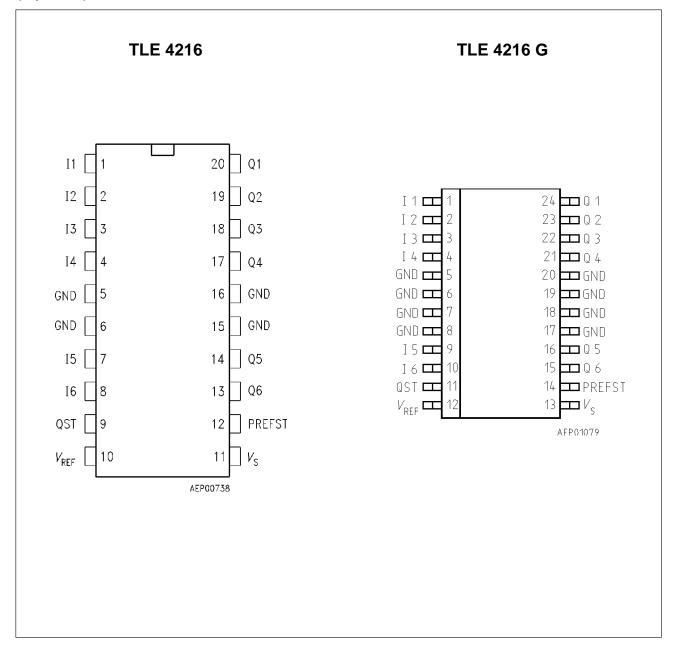

Intelligent Sixfold Low-Side Switch


TLE 4216

Bipolar IC

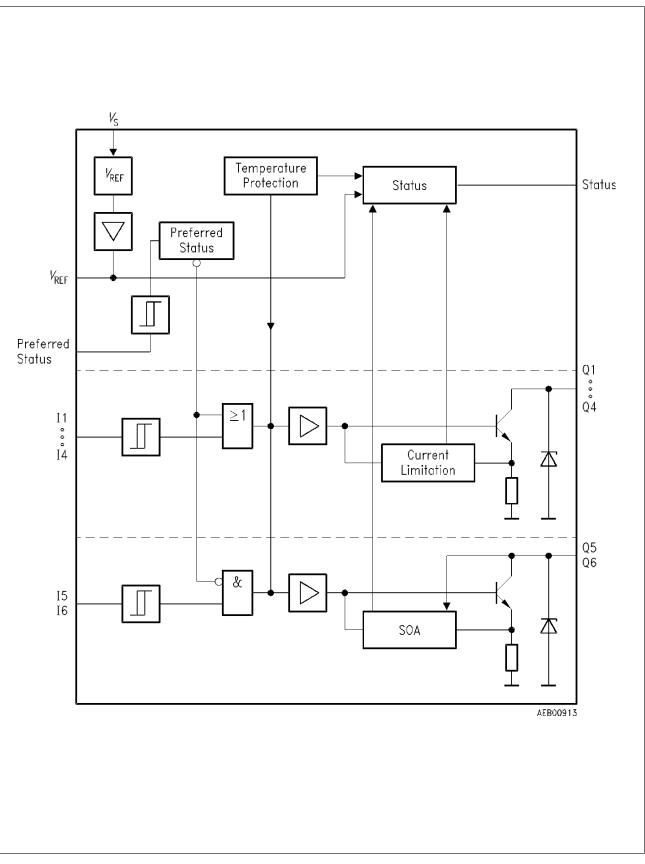
Features

- Double low-side switch, 2 x 0.5 A
- Quad low-side switch, 4 x 50 mA
- Power limitation
- Open-collector outputs
- Overtemperature shutdown
- Status monitoring
- Shorted-load protection
- Integrated clamp Z-Diodes
- Temperature range 40 to 110 °C


Туре	Ordering Code	Package		
TLE 4216	Q67000-A8237	P-DIP-20-3		
TLE 4216 G	Q67000-A9108	P-DSO-24-3 (SMD)		

▼ New type

TLE 4216 is an integrated, sixfold low-side power switch with power limiting of the 0.5 A outputs, shorted load protection of the 50 mA switches and Z-diodes on all switches from output to ground. TLE 4216 is particularly suitable for automotive and industrial applications.


Pin Configuration

(top view)

Pin Definitions and Functions

TLE 4216 G	TLE 4216	Symbol	Function
Pin No.	Pin No.		
1, 2, 3, 4	1, 2, 3, 4	11, 12, 13, 14	Inputs of 50-mA switches 1, 2, 3, 4
5, 6, 7, 8	5, 6	GND	Ground, cooling
9, 10	7, 8	15, 16	Inputs of 0.5 A switches 5, 6
11	9	Q _{ST}	Status analog output
12	10	V _{REF}	Reference voltage; a higher reference voltage than the internal one can be applied from the exterior as a voltage reference for the status output (A/D converter).
13	11	Vs	Supply voltage
14	12	PREFST	Preferred state (low = preferred state of all outputs regardless of inputs)
15, 16	13,14	Q6, Q5	Outputs 6, 5 (0.5 A), open collector
17, 18, 19, 20	15, 16	GND	Ground, cooling
21, 22, 23, 24	17, 18, 19, 20	Q4, Q3, Q2, Q1	Outputs 4, 3, 2, 1 (50 mA), open collector

Block Diagram

Semiconductor Group

Circuit Description

Input Circuits

The control inputs and the preferred-state input consist of TTL-compatible Schmitt triggers with hysteresis. Driven by these stages the buffer amplifiers convert the logic signal necessary for driving the NPN power transistors.

Switching Stages

The output stages consist of NPN power transistors with open collectors. Each stage has its own protective circuit for limiting power dissipation and shorted-load current, which makes the outputs shorted-load protected to the supply voltage throughout the operating range. Integrated Z-diodes limit positive voltage spikes that occur when inductive loads are discharged.

Monitoring and Protective Functions

Each output is monitored in its activated status for overload. Furthermore, large parts of the circuitry are shutdown (control, output stages). The information from these malfunctions is ORed and applied to the status output. If several malfunctions appear simultaneously, the highest voltage level will dominate. The IC is also protected against thermal overload. If a chip temperature of typically 160 °C is reached, overtemperature is signalled on the status output. If the temperature continues to increase, all outputs are turned off at 170 °C.

If the minimum supply voltage for functioning is not maintained, the output stages become inactive. At a supply voltage of 2 to 4 V, the outputs are switched to a preferred state regardless of the level on pin PREFST. If the preferred state is to be maintained beyond this range, pin PREFST must be switched to low potential. Above a supply voltage of typical 3 V (max. 4 V) the preferred state is controlled by pin PREFST. From 4 to 5.2 V the logic operation of the outputs is guaranteed, but the status output cannot be evaluated. At a supply voltage of 5.2 to 30 V the full function is guaranteed.

Application Description

Applications in automotive electronics require intelligent power switches activated by logic signals, which are shorted-load protected and provide error feedback.

The IC contains six power switches connected to ground (low-side switch). On inductive loads the integrated Z-diodes clamp the discharging voltage.

By means of TTL signals on the control inputs (active high) all six switches can be activated independently of another when a high level appears on the preferred-state input. When there is a low level on the preferred-state input, switches 1 to 4 are switched on, switches 5 and 6 are switched off regardless of the input level. The inputs are highly resistive and therefore must not be left unconnected, but should always be on fixed potential (noise immunity).

The status output signals the following malfunctions by analog voltage levels:

- Overload
- Overtemperature

Supply Voltage $V_{\rm S}$	PREFST	l1 l6	Q1 Q4	Q5, Q6
2 to 4 V	L	Х	L	Н
4 to 30 V	Н	L	Н	Н
4 to 30 V	Н	Н	L	L

Possible Input and Output Levels

Absolute Maximum Ratings

 $T_{\rm j}$ = - 40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltages

Supply voltage	Vs	- 1	40	V	
Supply voltage, load circuit	V _{Q1-6}	- 0.7	25	V	
Input voltage	$V_{ m I1-6}, \ V_{ m PREFST}$	0	VS	V	
Input voltage	$V_{\rm REFext}$	- 0.7	7	V	
Currents					
Switching current	I_{Q1} - I_{Q6}				limited internally
Current on reverse poling in load circuit	I _{Q5, Q6}	- 0.5		A	
Current on reverse poling in load circuit	I _{Q1-Q4}	- 50		mA	
Output current positive clamp	I _{Z5-Z6}		0.7	A	
Output current positive clamp	<i>I</i> _{Z1-Z4}		70	mA	
Junction temperature	T _j	- 40	150	°C	Thermal overload shutdown at 170 °C
Storage temperature	T _{stg}	- 50	150	°C	

Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Supply voltage	Vs	5.2	30	V	$V_{\text{REF}} \le V_{\text{S}}$, functioning is guaranteed at $V_{\text{S}} = 4 - 5.2$ V but status output cannot be evaluated.
Supply voltage in load circuit	V_{Q1-6}	- 0.3	24	V	
Ambient temperature	T _A	- 40	110	°C	
Supply voltage for load short-circuit	Vs		16	V	
Input current (high)	I _{IH}		100	μΑ	
Thermal resistance Junction-ambient	$R_{ m th~JA}$		65	K/W	P-DSO-24-3
Junction-ambient	$R_{ m th~JA}$		55	K/W	P-DIP-20-3

Characteristics

 $V_{\rm S}$ = 5 to 12 V; $T_{\rm j}$ = – 25 to 140 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General

Supply current Supply current	I _S I _S	50 36	70 50	mA mA	
Quiescent current	I _S	8	11	mA	$V_{\rm S} = 5 \text{ V}$ $V_{\rm I} < V_{\rm IL}; V_{\rm IP} > V_{\rm IH}$

Logic (Control inputs + preferred state)

H-switching threshold	V _{IH}	1.3	1.8	2.1	V	
L-switching threshold	V_{IL}	0.9	1.2	1.5	V	
Hysteresis	$\Delta V_{\rm I}$	0.3	0.6	1.0	V	
Input current						
Input current	$I_{\rm I}$	-2		2	μA	$0.9 V < V_1 < 6 V$
L-input current	$-I_{\rm IL}$	0		20	μA	$0.5 \text{ V} < V_1 < 0.9 \text{ V}$

Switching Stages

Load current	I _{Q1-Q4}	50			mA	$V_{\rm S}$ = 2 V (preferred state)
Saturation voltage Saturation voltage Saturation voltage	$V_{ m QSat~5,~6}$ $V_{ m QSat~1-4}$ $V_{ m QSat~1-4}$		0.5 0.4	0.8 0.6 0.22	V V V	$I_{\rm Q} = 0.4 \text{ A}; V_{\rm I} > V_{\rm IH}$ $I_{\rm Q} = 50 \text{ mA}; V_{\rm I} > V_{\rm IH}$ $I_{\rm Q} = 20 \text{ mA}; V_{\rm I} > V_{\rm IH}$
Turn-OFF time	t _{D-ON} t _{D-OFF}	0.2 0.2	1 1	1.5 1.5	μs μs	see Diagrams see Diagrams; $I_{\rm L} = I_{\rm max}$

Characteristics (cont'd)

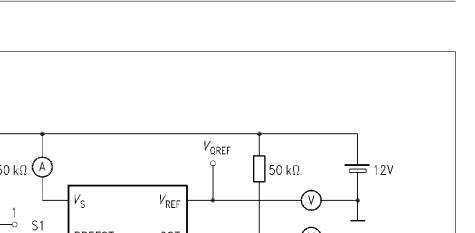
$V_{\rm S}$ = 5 to 12 V; $T_{\rm j}$ = – 25 to 140 °C

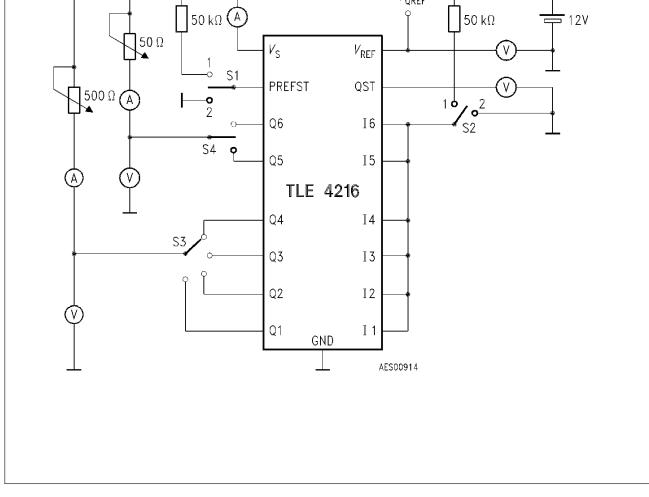
Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Temperature Protection

Overtemperature (signaled on status	160	°C	
output) Overtemperature (outputs shut down)	170	°C	

Outputs

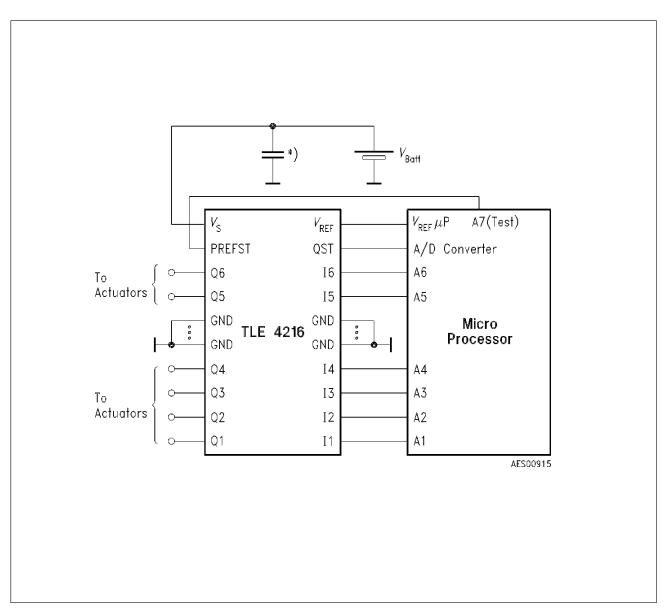

Output voltage pos. clamp	V _{Q1-4}	25.5	33	V	<i>I</i> = 50 mA
Output voltage pos. clamp	V_{Q5-6}	25.5	35	V	<i>I</i> = 0.5 A
Shorted-load current	I _{Q1max-}	50	120	mA	$V_{\rm Q}$ < 16 V
Leakage current	Q4max I _{Q1-4}		200	nA	$V_{\rm Q} = 24 \rm V;$
Leakage current Shorted-load current	$I_{ ext{Q5;6}}$ $I_{ ext{Q5max-}}$ Q6max		300	μA	$T_{\rm j}$ = 125 °C $V_{\rm Q}$ = 24 V see Diagrams
Status output No error	V		0.5	V	$V_{\rm RFF} = 5 {\rm V}^{1)}$
Overload output 6	$V_{ m st}$ $V_{ m st}$	1.0	1.3	V	$V_{\text{REF}} = 5 V^{-1}$
Overload output 5	$V_{\rm st}$	1.4	1.7	V	$V_{\text{REF}} = 5 V^{1}$
Overload output 4	$V_{\rm st}$	1.8	2.1	v	$V_{\text{REF}} = 5 \text{ V}^{1}$
Overload output 3	$V_{\rm st}$	2.2	2.5	V	$V_{\rm REF} = 5 \rm V^{1}$
Overload output 2	$V_{\rm st}$	2.6	2.9	V	$V_{\text{REF}} = 5 \text{ V}^{1}$
Overload output 1	V _{st}	3.0	3.3	V	$V_{\rm REF} = 5 {\rm V}^{1)}$
Overtemperature	$V_{\rm st}$	3.5		V	$V_{\text{REF}} = 5 \text{ V}^{1}$


¹⁾ The limits shift proportionally for a higher value of reference voltage.

Characteristics (cont'd)

 $V_{\rm S}$ = 5 to 12 V; $T_{\rm j}$ = – 25 to 140 °C

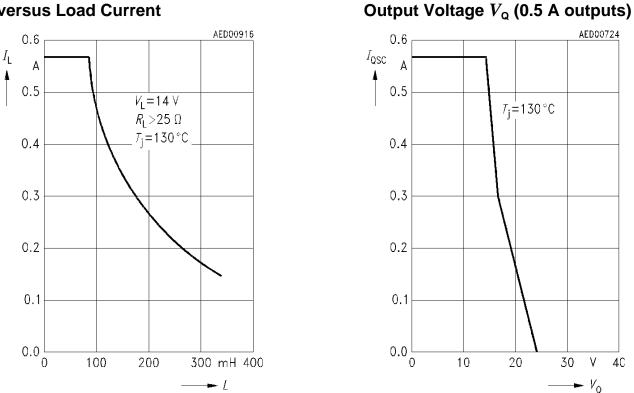
Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Source resistance of status output	R _{QSt}	100		550	Ω	
Delay time of status	t _{dst}			10	μs	Shorted load
Reference voltage (internal)	V _{REF}		2.5		V	
Input resistance of reference pin	R_{REF} in	7	10	14.5	kΩ	V _{REF} = 2.8 V 6.5 V



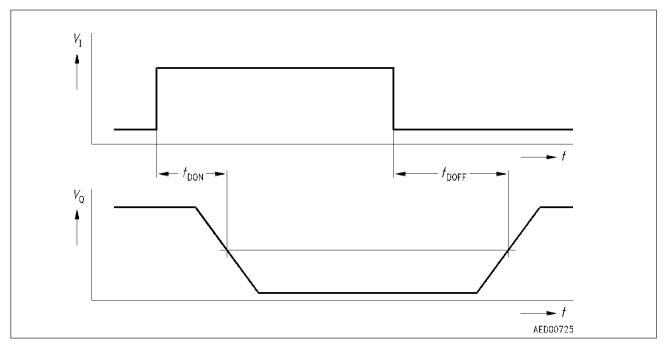
Test Circuit

S1 in position 1: all switches can be activated by S2 (position 1) or deactivated (position 2)

S1 in position 2: preferred state


Application Circuit

*) The capacitance depends on the inductance and current load of the supply.


Short-Circuit Current I_{QO} versus

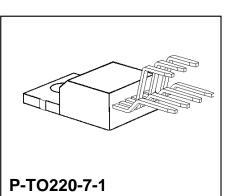
Diagrams

Permissible Load Inductance versus Load Current

When switching the maximum inductive loads, the maximum temperature T_j of 150 °C may be briefly exceeded. The IC will not be destroyed by this, but the restrictions concerning useful life should be observed.

Intelligent 4-A Low-Side Switch

Preliminary Data

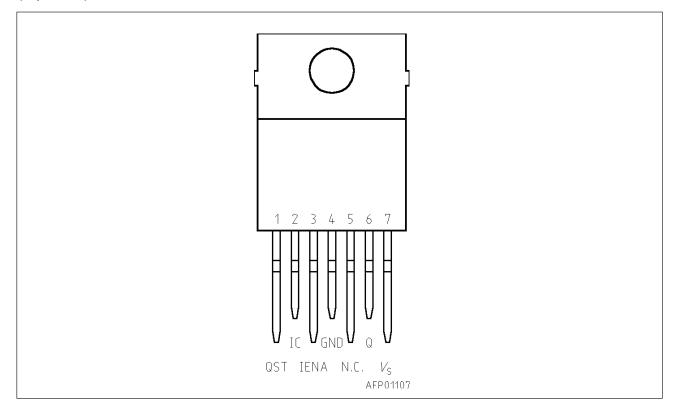

Features

- Single low-side switch, 4 A
- Low-ON-resistance (typ. 0.25 Ω)
- Power limitation
- Overtemperature shutdown
- Overload shutdown
- Reverse polarity protection
- Status monitoring
- Shorted-load protection
- Integrated clamp Z-diodes
- Temperature range 40 to 110 °C

Туре	Ordering Code	Package
TLE 4224	Q67000-A9062	P-TO220-7-1

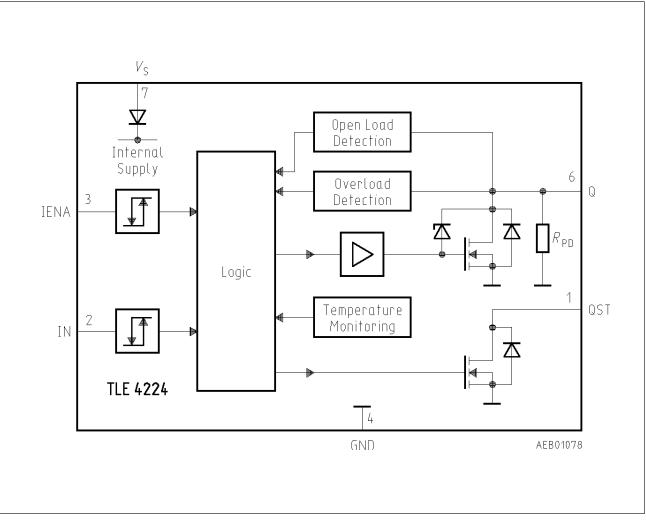
New type

TLE 4224 is an integrated low-side power-switch with reverse-polarity protection, load interrupt and shorted-load detection, temperature monitoring, error signaling via a status output and an integrated Z-diode for output clamping. TLE 4224 is designed for automotive applications.



TLE 4224

SPT-IC


Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	QST	Status output (open collector) for error monitoring; shorted-load protected to $V_{\rm ST} \leq 6.25$ V
2	IN	Control input, active high.
3	IENA	Enable input, active high.
4	GND	Ground, connected internally to cooling lug.
5	N.C.	Not connected
6	Q	Power output (open drain) for inductive loads; shorted-load protected.
7	V _S	Supply voltage; if there is overvoltage on this pin, the major part of the circuitry is shutdown.

Block Diagram

Application Description

This IC is specially designed to drive inductive loads (relays, electromagnetic valves). An integrated clamp diode limits output voltage when inductive loads are discharged. For the detection of errors there is a status output, which monitors the following errors by logic level:

- Thermal overload,
- Open and shorted load to ground in active and inactive mode,
- Overload (also shorted load to supply) in active mode.

Circuit Description

Input Circuits

The control and enable inputs, both active high, consist of Schmitt triggers with hysteresis. All inputs are connected with pull-down current sources. Unconnected inputs are intrepreted as "low".

Switching Stages

The power output consists of a DMOS power transistor with open drain. The output stage is shorted-load-protected throughout the operating range. The integrated clamp-diode limits voltage spikes produced when inductive loads are discharged.

Protective Circuits

An integrated diode protects against reverse poling of the supply voltage within the operating range. The load circuit withstands reverse poling within the bounds of the maximum ratings (no shorted load permissible at the same time). A temperature protection guards the IC against thermal overload.

Error Detection

The status output signals the status of the switching stage at normal operation. (Low = OFF; high = ON). In case of any error the status output is set according to the table on the next page.

If current overload occurs, the error condition is stored in an internal register and the output is shut down. To reset this register the control input has to be switched off and then on again.

The status of the error detection circuit is directly dependent of the input state.

Status Monitoring

Operating Condition	Enable Input	Control Input	Power Output	Status Output
Normal Operation	LOW LOW HIGH HIGH	LOW HIGH LOW HIGH	OFF OFF OFF ON	LOW LOW LOW HIGH
Thermal Overload	RANDOM RANDOM	LOW HIGH	OFF OFF	HIGH LOW
Open Load or shorted Load to Ground	LOW LOW HIGH HIGH	LOW HIGH LOW HIGH	OFF OFF OFF ON	HIGH HIGH HIGH LOW
Overload or Shorted Load to $V_{\rm S}$	LOW LOW HIGH HIGH	LOW HIGH LOW HIGH	OFF OFF OFF OFF	HIGH HIGH HIGH LOW

Absolute Maximum Ratings

 $T_{\rm A} = -40$ to 125 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltages

Supply voltage	Vs	- 15	60	V	_
Output voltage	V_{Q}	_	45	V	_
Output voltage	VQ	_	60	V	<i>t</i> ≤ 500 ms
Output voltage	$V_{\rm ST}$	- 0.3	45	V	-
Input voltage	$V_{I,F}$	- 1.5	6	V	_

Absolute Maximum Ratings (cont'd) $T_{\rm A} = -40$ to 125 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Currents

Output current	I _Q	5	_	A	limited internally
Current on reverse poling	$I_{\rm Q}; I_{\rm GND}$	- 4	_	А	_
Output current, status pin	I _{ST}	- 5	5	mA	_
Discharging energy for inductive load	E	_	50	mJ	_
Junction temperature Junction temperature	$egin{array}{c} T_{ m j} \ T_{ m j} \end{array}$	- 40	150 175	°C ℃	during clamping
Storage temperature	T _{stg}	- 50	150	°C	_

Operating Range

Supply voltage	Vs	5.5	45	V	_
Supply voltage slew rate	dV _S /dt	- 1	1	V/µs	_
Output voltage	V _Q V _Q	- 0.3 -	45 60	V V	– during clamping
Output voltage	V _{ST}	- 0.3	45	V	_
Output current	I _{ST}	0	2	mA	_
Ambient temperature	T _A	- 40	125	°C	<i>T</i> _j ≤ 150 °C
Thermal resistance junction to case junction to ambient	$R_{ m th\ JC}$ $R_{ m th\ JA}$		3 65	K/W K/W	

Characteristics

 $V_{\rm S}$ = 6.5 to 18 V (typ. 12 V) $T_{\rm A}$ = - 40 to 125 °C; $T_{\rm j}$ ≤ 150 °C (typ. 25 °C) $V_{\rm D}$ = 5.1 V

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Quiescent current	Is	_	0.3	1	mA	Output OFF
Supply current	Is	_	2	5	mA	Output ON
Open load current	I _{Qu}	_	_	250	mA	_
Open load shutdown voltage threshold	V_{Qu}	6	_	7.2	V	Output ON $V_{\rm S}$ = 12 V
Overload shutdown current threshold	I _{QAB}	5 4			A A	$T_{\rm j} = -$ 40 to 50 °C $T_{\rm j} = 50$ to 150 °C
Overtemperature shutdown threshold	T _{AB}	145	_	175	°C	only a design value
Overtemperature shutdown hysteresis	ΔT_{AB}	_	10	_	°C	only a design value

Control and Enable Input

H-input voltage	V _{IH}	2.0	_	6.0	V	-
L-input voltage	V_{IL}	- 0.3	_	1.0	V	-
Hysteresis	ΔV_1	0.2	_	-	V	-
H-input current	I _{IH}	50	100	140	μA	$V_1 = 5 V$
H-input current	I _{FH}	5	15	20	μA	$V_{\rm F}$ = 5 V

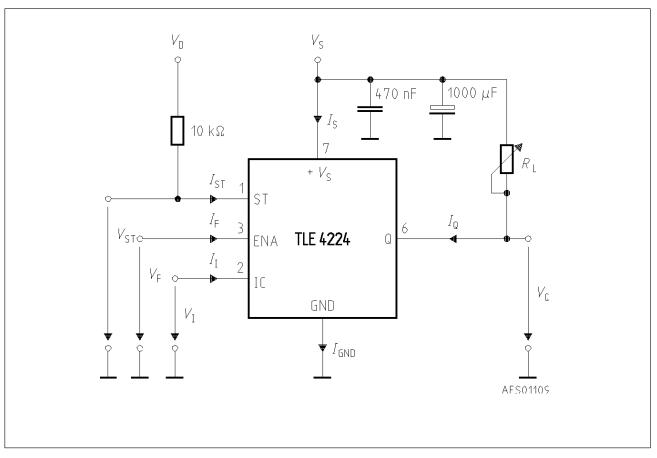
Status Output

Low voltage level	V _{ST}	_	_	0.5	V	$I_{\rm ST} = 2 {\rm mA}$
Leakage current high	$I_{\rm ST}$	_	_	2	μA	$V_{\rm S}$ = 0 V

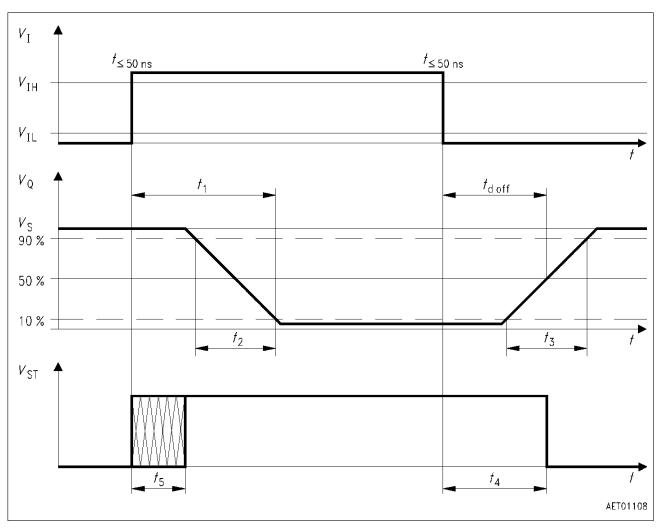
Characteristics (cont'd)

 $V_{\rm S}$ = 6.5 to 18 V (typ. 12 V) $T_{\rm A}$ = - 40 to 125 °C; $T_{\rm j}$ ≤ 150 °C (typ. 25 °C) $V_{\rm D}$ = 5.1 V

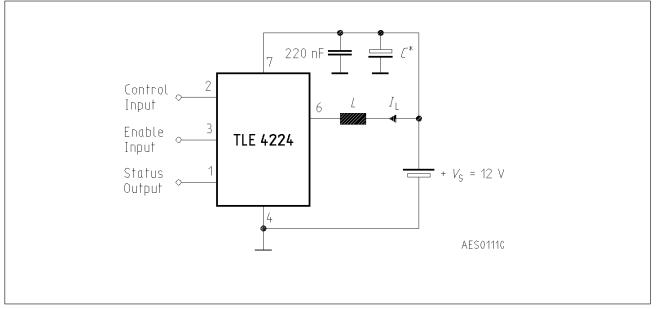
Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		


Power Output

		i	i	-		
Static drain source ON-resistance	$R_{ m DSON}$ $R_{ m DSON}$	_	0.25 -	_ 0.5	Ω Ω	$T_{\rm j} \le 25 \ ^{\circ}{ m C}$ $T_{\rm j} = 150 \ ^{\circ}{ m C}$ $I_{ m Q} = 4 \ { m A}, \ V_{ m S} \ge 9.5 \ { m V}$
Pull-down resistance	$R_{\rm PD}$	14	20	26	kΩ	<i>T</i> _j = 25 °C
Output ON delay time Output ON fall time Output OFF rise time Output OFF status delay Output ON status delay	$\begin{array}{c}t_1\\t_2\\t_3\\t_4\\t_5\end{array}$	_ _ _ _	25 20 25 30 -	- - - 50	μs μs μs μs μs	$I_{Q} = 0.2 \text{ A}$ $I_{Q} = 0.2 \text{ A}$ $I_{Q} = 2 \text{ A}$ $I_{Q} = 2 \text{ A}$ $I_{Q} = 2 \text{ A}$
Overload OFF delay time	t _{DSO}	50	_	150	μs	design value only


Clamp Diode

Clamp diode clamping voltage	V_{QZ}	45	_	60	V	_
venage						


¹⁾ Time between status valid and switching on or error detection

Test Circuit

Timing Diagram

Application Circuit

Semiconductor Group