TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/L Series

TMP93PW76

TOSHIBA CORPORATION

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = (INT0, INT1), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of fc or fs) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 16-Bit Microcontroller

TMP93PW76F

Outline and Feature 1.

The TMP93PW76F is a system evaluation LSI having a built in One-Time PROM (128 Kbytes) for TMP93CW76/CU76/CT76F.

A programming and verification for the internal PROM is achieved by using a general EPROM programmer with an adapter socket.

The function of this device is exactly same as the TMP93CW76/CU76/CT76F by programming to the internal PROM and the TMP93PW76F is used as the evaluation chip of TMP93CW76/CU76/CT76F.

Product no.	ROM	RAM	Package	Adapter Socket no.
TMP93PW76F	OTP 128 Kbytes	2.5 Kbytes	P-QFP100-1420-0.65A	BM11146A

000707FBP1

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or
- The information contained herein is subject to change without notice.

Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by

> 2003-03-31 93PW76-1

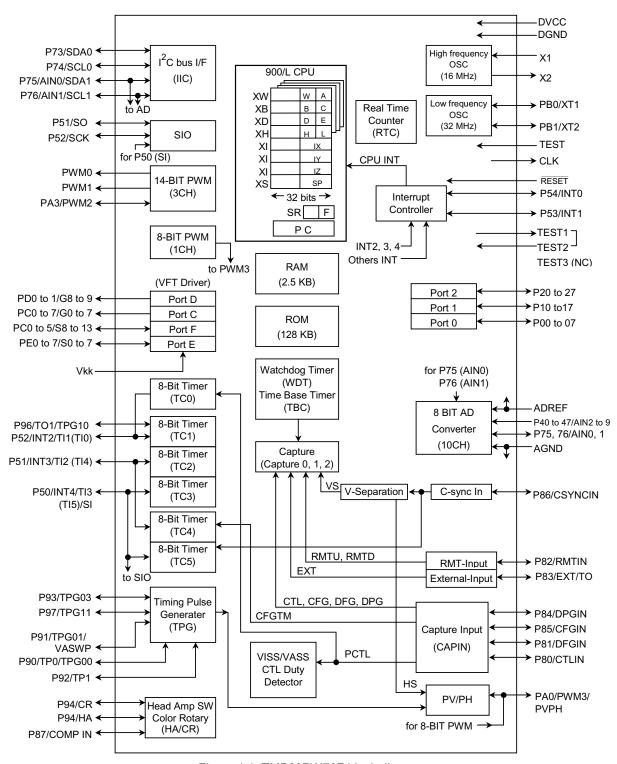


Figure 1.1 TMP93PW76F block diagram

2. Pin Assignment and Functions

The assignment of input and output pins for the TMP93PW76F, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93PW76F.

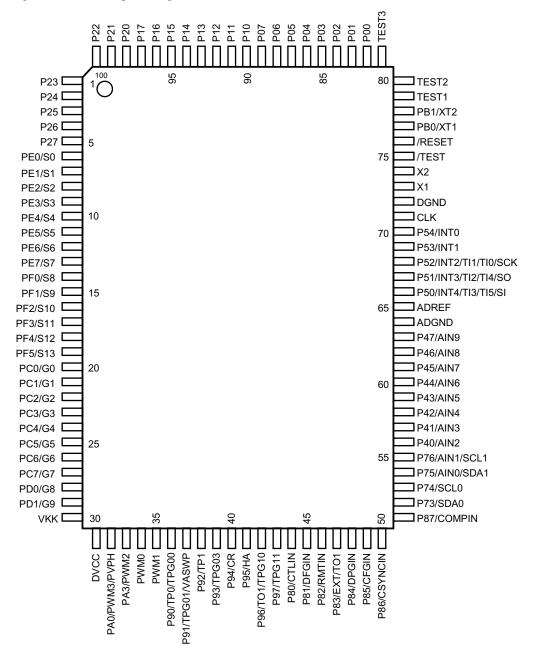


Figure 2.1.1 Pin assignment (100-pin QFP)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

(1) MCU mode

Table 2.2.1 Pin names and function (1/3)

Pin name	Number of pins	I/O	Functions
P00 to P07	8	I/O	port0: I/O ports
P10 to P17	8	I/O	port1: I/O ports
P20 to P27	8	I/O	port2: I/O ports
P40 to P47	8	Input	port4: Input ports
AIN2 to AIN9		Input	Analog input: Input to AD converter
P50	1	I/O	Port50: I/O port (schmitt input)
INT4		Input	External Interrupt request input 4: Rising edge/Falling edge programable
TI3		Input	16-bit timer3 (TC3) Input 3
TI5		Input	16-bit timer5 (TC5) input 5
SI		Input	SIO received data
P51	1	I/O	Port51: I/O port (schmitt input)
INT3		Input	External Interrupt request input 3: Rising edge/Falling edge programable
TI2		Input	16-bit timer2 (TC2): Input 2
TI4		Input	16-bit timer4 (TC4): input 4
SO		Output	SIO sending data
P52	1	I/O	Port52: I/O port (schmitt input)
INT2		Input	External Interrupt request input 2: Rising edge/Falling edge programable
TI1		Input	16-bit timer1 (TC1) Input 1
TI0		Input	8-bit Timer0 (TC0) Input 0
SCK		I/O	SIO clock line
P53	1	I/O	Port53: I/O port (schmitt input)
INT1		Input	External Interrupt request pin1: Rising edge/Level programable
P54	1	I/O	Port54: I/O port (schmitt input)
INT0		Input	External Interrupt request pin0: Rising edge/Falling edge programable
P73	1	I/O	Port73: I/O port (schmitt input, Push-pull or open-drain output selectables)
SDA0		I/O	I ² C bus SDA0 line
P74	1	I/O	Port74: I/O port (schmitt input, Push-pull or open-drain output selectable)
SCL0		I/O	I ² C bus SCL0 line
P75	1	I/O	Port75: I/O port (schmitt input, Push-pull or open-drain output selectable)
SDA1		I/O	I ² C bus SDA1 line
AIN0		Input	Analog input 0: Analog input signal for AD converter
P76	1	I/O	Port76: Input port (schmitt input, Push-pull or open-drain output selectable)
SCL1		I/O	I ² C bus SCL1 line
AIN1		Input	Analog input 1: Analog input signal for AD converter
P80	1	I/O	Port80: I/O port (schmitt input)
CTLIN		Input	CTL Capture input (Capture 0)
P81	1	I/O	Port81: I/O port (schmitt input)
DFGIN		Input	DFG Capture input (Capture 1)

Table 2.2.1 Pin names and function (2/3)

Din nama	Number	I/O	Functions
Pin name	of pins	1/0	Functions
P82	1	I/O	Port82: I/O port (schmitt input)
RMTIN		Input	Remote Control Signal Capture input
P83	1	I/O	Port83: I/O port (schmitt input)
EXT		Input	External Capture input (Capture 0)
TO1		Output	Timer Out 1
P84	1	I/O	Port84: I/O port (schmitt input)
DPGIN		Input	DPG Capture input (Capture 0)
P85	1	I/O	Port85: I/O port (schmitt input)
CFGIN		Input	CFG Capture input (Capture 2)
P86	1	I/O	Port86: I/O port (schmitt input)
CSYNCIN		Input	C.sync Capture input
P87	1	I/O	Port87: I/O port (schmitt input)
COMPIN		Input	Envelope Comparate Input(to HA/CR)
P90	1	I/O	Port90: I/O port (Push-pull or open-drain output selectable)
TP0		Output	Timing Pulse output 0
TPG00		Output	TPG00: TPG0 output
P91	1	I/O	Port91: I/O port (Push-pull or open-drain output selectable)
VASWP		Output	Video/Audio head switching control signal output
TPG01		Output	TPG01: TPG0 output
P92	1	I/O	Port92: I/O port (Push-pull or open-drain output selectable)
TP1		Output	Timing Pulse output 1
P93	1	I/O	Port93: I/O port (Push-pull or open-drain output selectable)
TPG03		Output	TPG03: TPG0 output
P94	1	I/O	Port94: I/O port (Push-pull or open-drain output selectable)
CR		Output	Color Rotary Output
P95	1	I/O	Port95: I/O port (Push-pull or open-drain output selectable)
HA		Output	Head Amp Switching Control Output
P96	1	I/O	Port96: I/O port (Push-pull or open-drain output selectable)
TO1		Output	Timer Out 1
TPG10		Output	TPG10: TPG1 output
P97	1	I/O	Port97: I/O port (Push-pull or open-drain output selectable)
TPG11		Output	TPG11: TPG1 output
PA0	1	I/O	PortA0: I/O port
PVPH		Output	PVPH 3-state Output
PWM3		Output	PWM(8 bits) output 3
PA3	1	I/O	PortA3: I/O port(Push-pull or open-drain output selectable)
PWM2		Output	PWM(14 bits) output 2

Table 2.2.1 Pin names and function (3/3)

Pin name	Number of pins	I/O	Functions
PWM0	1	Output	PWM(14 bits) output 0 (Push-pull or open-drain output selectable)
PWM1	1	Output	PWM(14 bits) output 1 (Push-pull or open-drain output selectable)
PB0	1	I/O	PortB0: I/O port (Open-drain Output)
XT1		Input	Low Frequency Oscillator connecting pin
PB1	1	I/O	PortB1: I/O port (Open-drain Output)
XT2		Output	Low Frequency Oscillator connecting pin
PC0 to PC7	8	Output	PortC: Output (High break down voltage outputs with pull-down resistor)
G0 to G7		Output	Grid Drivers
PD0,1	2	Output	PortD: Output (High break down voltage outputs with pull-down resistor)
G8, 9		Output	Grid Driver
PE0 to PE7	8	I/O	PortE: I/O ports (High break down voltage outputs with pull-down resistor)
S0 to S7		Output	Segment Driver
PF0 to PF5	6	I/O	PortF: I/O ports (High break down voltage outputs with pull-down resistor)
S8 to S13		Output	Segment Driver
TEST1	1	Output	TEST1 should be connected with TEST2 pin.
TEST2	1	Input	1 EST I STIOUIU DE COTTIECTEU WITH 1 EST 2 PHI.
TEST3	1	Output	TEST3 (NC) should be open connection.
CLK	1	Output	Clock output: Output (System Clock ÷ 2) clock.
			Pulled-up during reset.
			Can be set to output disable for reducing noise. (Initial Disable)
TEST	1	Input	Test pin: Always set to "Vcc" level
RESET	1	Input	Reset: Initializes LSI. (with pull-up resistor)
X1	1	Input	High Frequency Oscillator connecting pins (16 MHz)
X2	1	Output	High Frequency Oscillator connecting pins (16 MHz)
VKK	1		VFT Driver power supply pin
DVCC	1		Power supply pin
DGND	1		GND pin (0 V)
ADREF	1		Reference voltage input for AD converter
ADGND	1		GND pin for AD converter

(2) PROM mode

Table 2.2.2 shows pin function of the TMP93PW76F in PROM mode.

Table 2.2.2 Pin name and function of PROM mode

Pin Function	Number of Pins	I/O	Function	Pin Name (MCU mode)		
A7 to A0	8	Input		P27 to P20		
A15 to A8	8	Input	PROM address input	P17 to P10		
A16	1	Input		PA0		
D7 to D0	8	I/O	PROM data input/output	P07 to P00		
CE	1	Input	Chip enable	P93		
ŌĒ	1	Input	Output control	P91		
PGM	1	Input	Program control	P92		
VPP	1	Power supply	12.75 V/5 V (Program power supply voltage)	TEST		
VCC	1	Power supply	6.25 V/5 V	VCC		
VSS	2	Power supply	0 V	DGNG, ADGND		
Pin Function	Number of Pins	I/O	Treatment of Pin			
P90	1	Input	Fix to low level (security pin)			
RESET	1	Input	Fix to low lovel (PROM made)			
CLK	1	Input	Fix to low level (PROM mode)			
TEST3	1	Output	Open			
X1	1	Input				
X2	1	Output	Self oscillation with resonator			
P76, P75, P97 to P94	6	I/O	Fix to high level			
TEST1/TEST2	2	Output/Input	Short			
P47 to P40 P54 to P50 P74, P73 P87 to P80 PA3 PB1, PB0 PC7 to PC0 PD1, PD0 PE7 to PE0 PF5 to PF0 PWM0 PWM1 ADREF VKK	54	I/O	Open			

3. Operation

This section describes the functions and basic operational blocks of the TMP93PW76F.

The TMP93PW76F has PROM in place of the mask ROM which is included in the TMP93CW76. The other configuration and functions are the same as the TMP93CW76/CU76/CT76F. Regarding the function of the TMP93PW76F (not described), see the part of TMP93CW76/CU76/CT76F.

The TMP93PW76F has two operational modes: MCU mode and PROM mode.

3.1 MCU Mode

(1) Mode-setting and function

The MCU mode is set by opening the CLK pin (pin open). In the MCU mode, the operation is same as TMP93CW76/CU76/CT76F.

(2) Memory-map

The memory map of TMP93PW76F is same as that of TMP93CW76F. Figure 3.1.1 shows the memory map in MCU mode. Figure 3.1.2 show that in PROM mode.

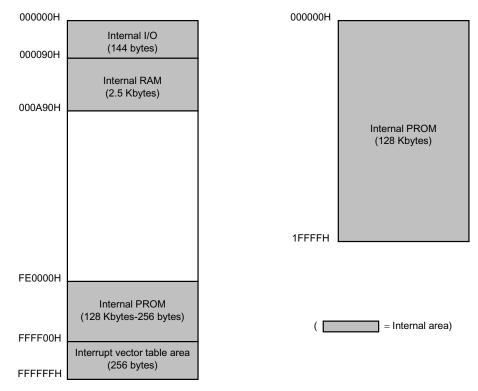


Figure 3.1.1 Memory map in MCU mode

Figure 3.1.2 Memory map in PROM mode

ROM areas of TMP93CW76/CU76/CT76F are shown in Table 3.1.1. When TMP93PW76F is used as the evaluation-chip for TMP93CU76, the programmable area located address 00000H to 07FFFH should be full of data FFH. When TMP93PW76F is used as the evaluation-chip for TMP93CT76, the programmable area located address 00000H to 0DFFFH should be full of data FFH.

Table 3.1.1 Memory of TMP93CW76/CU76/CT76

Product No.	ROM Area			
Floduct No.	MCU Mode	PROM Mode		
TMP93CW76	FE0000H to FFFFFH	00000H to 1FFFFH		
TMP93CU76	FE8000H to FFFFFH	08000H to 1FFFFH		
TMP93CT76	FEE000H to FFFFFH	0E000H to 1FFFFH		

4. Electrical Characteristics

4.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Power Supply Voltage	Vcc	-0.5 to 6.5	
Input Voltage	V _{IN}	-0.5 to Vcc + 0.5	V
Output Voltage (except PC, PD, PE, PF)	V _{OUT1}	-0.5 to Vcc + 0.5	V
Output Voltage (PC, PD, PE, PF)	V _{OUT2}	Vcc-40	
Output Current (except PC, PD, PE, PF) (per 1 pin)	I _{OH1}	-3.2	
Output Current (PC, PD) (per 1 pin)	I _{OH2}	-25	
Output Current (PE, PF) (per 1 pin)	I _{OH3}	-15	
Output Current (per 1 pin)	l _{OL}	3.2	mA
Output Current (total except PC, PD, PE, PF)	Σl _{OH1}	-40	
Output Current (total of PC, PD, PE, PF)	Σl _{OH2}	-120	
Output Current (total)	ΣI_{OL}	120	
Power Dissipation (Ta = 70°C)	PD	600	mW
Soldering Temperature	Tsolder	260	
Storage Temperature	Tstg	-65 to 150	°C
Operating Temperrature	Topr	-20 to 70	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics

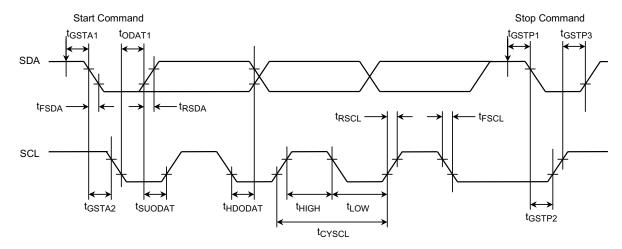
 $Ta = -20 \text{ to } 70^{\circ}\text{C}$

F	Parameter	Symbol	Condition	Min	Тур.	Max	Unit	
Power Supply Voltage		Vcc	fc = 4 to 16 MHz	4.5		5.5	V	
Power Sup	opiy voitage	VCC	fs = 30 to 34 kHz	2.7		5.5	V	
Input	P0, P1, P2, P4, P9, PA, PB, PE, PF	V _{IL1} (CMOS)				0.3 Vcc		
Low	DECET DE D7 D0	V _{IL2} (Schmitt)		-0.3		0.25 Vcc		
Voltage	TEST	VIL ₃ (Fixed)				0.3		
	X1	V _{IL4} (Xtal)				0.2 Vcc		
	P0, P1, P2, P4, P9, PA, PB, PE, PF	V _{IL1} (CMOS)	Vcc = 2.7 to 5.5 V	0.7 Vcc				
Input High Voltage	RESET , P5, P7, P8	VIH2 (Schmitt)		0.75 Vcc		Vcc + 0.3		
Voltage	TEST	V _{IH3} (Fixed)		Vcc - 0.3				
	X1	V _{IH4} (Xtal)		0.8 Vcc				
Output Lo	w Voltage	VOL	IOL = 1.6 mA (Vcc = 2.7 to 5.5 V)			0.45	٧	
Outmut His	ula Malka era	VOH	IOH = $-400 \mu A$ (Vcc = 2.7 to 5.5 V)	2.4			V	
Output Hiç	gn voltage	VOH1	IOH = -700 μA (Vcc = 4.5 to 5.5 V)	4.1			v 	
PE, PF			Vcc = 4.5 V	-5			A	
PC, PD		ІОН	VOH = 2.4 V	-15			mA	
Input Leak	age Current	ILI	0.0 ≦ Vin ≦ Vcc		0.02	±5		
Output Lea	akage Current	ILO	0.2 ≦ Vin ≦ Vcc-0.2		0.05	±10	μA	
Power Dov Voltage	wn	VSTOP	VIL2 = 0.2 Vcc, VIH2 = 0.8 Vcc	2.0		6.0	٧	
RESET		Door	Vcc = 5 V ± 10%	50		150	kΩ	
Pull Up Re	esistor	RRST	Vcc = 3 V ± 10%	80		200	KS2	
Pin Capac	itance	CIO	osc = 1 MHz/100 mVp-p			10	pF	
	idth RESET,	VTH			1.0		V	
P5, P7, P8	3	* 111				50	<u> </u>	
NORMAL		-	\/ \F\/ \ 400/		30	50	1	
RUN		-	Vcc = 5 V ± 10% fc = 16 MHz		18	28	mA	
IDLE2 IDLE1		-	IC = 10 IVIFIZ		<u>15</u> 5	25 8	-	
SLOW		Icc			50	80		
RUN		1.00	$Vcc = 3 V \pm 10\%$		30	45	1	
IDLE2		1	fs = 32.768 kHz		25	40	μA	
IDLE1		1	(typ: $VCC = 3.0 V$)		6	15	1	
STOP		1	Vcc = 2.7 to 5.5 V		0.2	10	1	

Note 1: Typical value are for $Ta = 25^{\circ}C$ and Vcc = 5 V unless otherwise noted.

Note 2: Icc measurement conditions (NORMAL, SLOW).

Only CPU is operational; output pins are open and input pins are fixed.


4.3 AD Conversion Characteristics

 $Ta = -20 \text{ to } 70^{\circ}\text{C}, \ Vcc = 4.5 \text{ to } 5.5 \ \text{V}$

Parameter	Symbol	Min	Тур.	Max	Unit
Analog Reference Voltage Supply	ADREF	Vcc-1.5	Vcc	Vcc	V
Allalog Reference voltage Supply	ADGND	Vss	Vss	Vss	V
Analog Input Voltage Range	VAIN	ADGND		ADREF	V
Analog Current for ADREF	IREF	_	1.0	1.5	mA
Total tolerance (excludes quantization error) (Ta = 25°C, Vcc = ADREF = 5 V)	E _T	_		±3	LSB

4.4 Serial BUS Interface Timing

(1) I²C bus Logic Timing

Parameter	Symbol	Min	Тур.	Max	Unit	
SCL cycle		tcycscl	2 ^N /fc		_	S
SCL low pulse width		t _{LOW}	_	2 ^{N-1} /fc	_	s
SCL High pulse width		tHIGH	2 ^{N-1} /fc		_	s
SDA Rising Time	(Note 1)	t _{RSDA}	_		_	s
SDA Falling Time	(Note 1)	t _{FSDA}	_	_	_	s
SCL Rising Time	(Note 1)	t _{RSCL}	_			s
SCL Falling Time	(Note 1)	t _{FSCL}	_	_		s
The time from start command write to start sheec	ense	tGSTA1	_		2 ^N /fc	s
Start condition hold time, start generation of the fir	rst clock after this	t _{GSTA2}	_	2 ^{N-1} /fc		s
Delay time from SCL falling to data output	(Note 2)	t _{ODAT1}	_		5/fc	s
Set up time of data output for SCL rising	(Note 2)	tSUODAT	0		_	s
The time of holding data for SCL rising	(Note 3)	tHODAT	4/fc		_	s
The time from stop command write to starting sto	t _{GSTP1}		_	2 ^{N-1} /fc	s	
The time from SDA falling to SCL rising (during st	t _{GSTP2}	2 ^{N-2} /fc		_	s	
Stop condition set up time		t _{GSTP3}	2 ^{N-1} /fc	_	_	s

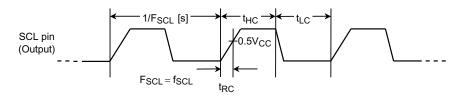
Note 1: The time of rising/falling depend on the feature of bus interface.

Note 2: The worst case is at the first bit of slave address.

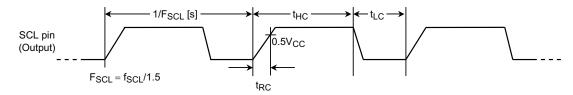
Note 3: The worst case is at the acknowledge bit.

Note 4: N: Diving value set by I2CCR1 <SCK 2:0>

SCK	Ν
000	6
001	7
010	8
011	9
100	10
101	11
110	12
111	reserved


(2) Master SCL output timing

The I2CCR1 <SCK 2:0> are used to select a maximum transfer frequency directed from the SCL pin in the master mode. When rising time of the output clock (t_{RC}) is at least 8/fc [s], a high-level time of the output clock (t_{HC}) is t_{SCL} .


While the SCL line is fixed to low-level by a slave device, the output clock stops.

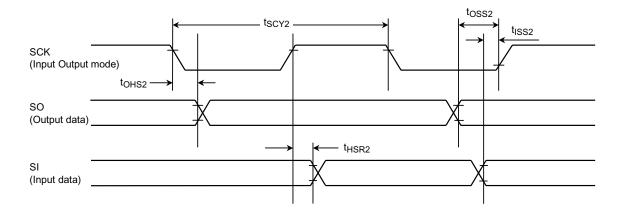
The first clock (tHC [s]) after restart is $(tSCL/2) \le tHC \le tSCL$.

(a) In case of tRC< (8/fc) [s] tHC = tLC = tSCL/2 [s] (tSCL = 1/fSCL [s])

(b) In case of $t_{RC} \ge (8/f_c)$ [s] $t_{HC} = t_{SCL}$ [s], $t_{LC} = t_{SCL}/2$ [s]

(3) Clock Syncro 8 bit SIO mode

a. SCK Input mode

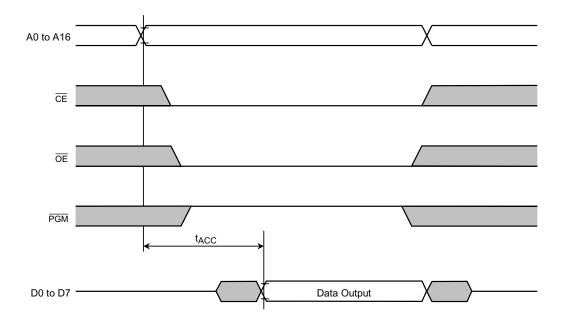

Parameter	Symbol	Expre	Unit	
Farameter	Syllibol	Min	Max	Offic
SCK cycle	t _{SCY2}	2 ⁵ X		S
SCK falling → Latch output data	t _{OHS2}	6X		s
Enable output data → SCK raising	toss2		t _{SCY2} - 16X	s
SCK raising → Latch input data	t _{HSR2}	6X		ns
Enable input data → SCK raising	t _{ISS2}	0		ns

Note: X = 1/fc

b. SCK Output mode

Parameter	Symbol	Expre	Unit	
		Min	Max	Offic
SCK cycle	t _{SCY2}	2 ⁵ X	2 ¹¹ X	S
SCK falling \rightarrow Latch output data	t _{OHS2}	2X		s
Enable output data → SCK raising	t _{OSS2}		t _{SCY2} - 2X	s
SCK raising → Latch input data	t _{HSR2}	2X		s
Enable input data → SCK raising	t _{ISS2}	0		ns

Note: X = 1/fc

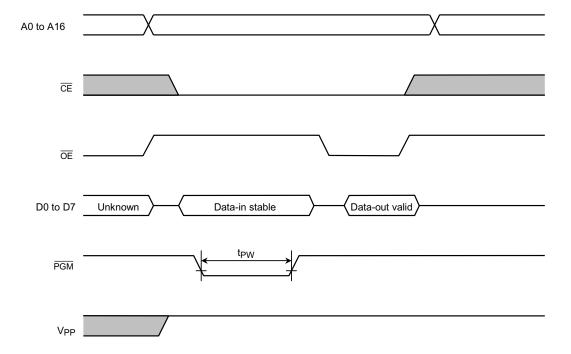

4.5 Read operation in PROM mode

DC/AC characteristics

 $Ta = 25 + 5^{\circ}C \ Vcc = 5 \ V \pm 10 \ \%$

Parameter	Symbol	Condition	Min	Max	Unit
V _{PP} Read Voltage	V_{PP}	_	4.5	5.5	V
Input High Voltage (A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IH1}	_	2.2	VCC + 0.3	V
Input low Voltage (A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IL1}	-	-0.3	0.8	V
Address to Output Delay	t _{ACC}	CL = 50 pF	_	$2.25T_{CYC} + \alpha$	ns

 $T_{CYC} = 400 \text{ ns} (10 \text{ MHz Clock})$ $\alpha = 200 \text{ ns}$



4.6 Program operation in PROM mode

DC/AC characteristics

 $Ta = 25 + 5^{\circ}C \ Vcc = 6.25 \ V \pm 0.25 \ \%$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Programming Supply Voltage	V _{PP}	-	12.50	12.75	13.00	V
Input High Voltage (D0 to D7, A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IH1}	_	2.2		V _{PP} + 1.0	V
Input low Voltage (D0 to D7, A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IL1}	-	-0.3		0.8	V
V _{CC} Supply Current	Icc	fc = 10 MHz	_		50	mA
V _{PP} Supply Current	Ipp	$V_{PP} = 13.00 \text{ V}$	_		50	mA
PGM Program Pulse Width	PW	$C_L = 50 \text{ pF}$	0.095	0.1	0.105	ms

Note 1: The power supply of Vpp (12.75 V) must be set power-on at the same time or the later time for a power supply of Vcc and must be clear power-on at the same time or early time for a power supply of Vcc.

- Note 2: The pulling up/down device on condition of Vpp = 12.75 suffers a damage for the device.
- Note 3: The maximum spec of Vpp pin is 14.0 V. Be carefull of a overshoot at the programming.