CMOS 8-Bit Microcontroller

TMPA8700CHN/F, TMPA8700CKN/F, TMPA8700CMN/F, TMPA8700CPN/F, TMPA8700CSN/F

The A8700CH/CK/CM/CP/CS is the high speed and high performance 8 bit single chip microcomputer. This MCU contains CPU core, ROM, RAM, input / output ports, six multi-function timer / counter, serial interface, on-screen display, data slicer, jitter elimination circuit, PWM, 8 bit A/D converter and remote control signal processor on a chip.

The functions of the OSD circuit conform to the on-screen display functions of closed caption decoders based on FCC standards.

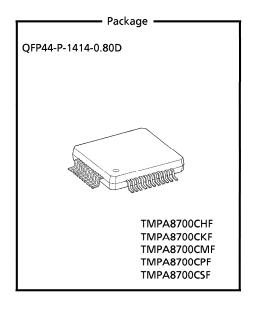
Part No.	ROM	RAM	Package	OTP MCU
TMPA8700CHN/F	16 Kbytes			
TMPA8700CKN/F	24 Kbytes	1 Kbytes		
TMPA8700CMN/F	32 Kbytes		SDIP42-P-600-1.78	TMPA8700PSN/F
TMPA8700CPN/F	48 Kbytes	2 1/2 1-1-1-1		
TMPA8700CSN/F	60 Kbytes	2 Kbytes		

Features

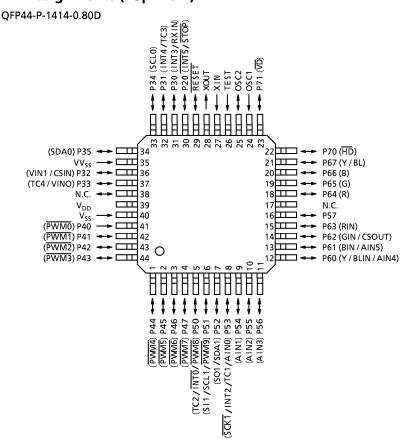
- ◆8 bit single chip microcomputer TLCS-870 Series
- lacktriangle Instruction execution time : 0.5 μ s (At 8 MHz)
- 412 basic instructions
 - Multiplication and Division (8 bits × 8 bits, 16 bits ÷ 8 bits)
 - : Instruction execution time 3.5 μ s (At 8 MHz)
 - Bit manipulations (Set / Clear / Complement / Move / Test / Exclusive Or)
 - 16 bit data operations
 - 1 byte jump / subroutine-call (Short relative jump / Vector call)
- ◆ 14 interrupt sources (External: 5, Internal: 9)
 - All sources have independent latches each, and nested interrupt control is available.
 - Three edge-selectable external interrupts with noise reject
 - High-speed task switching by register bank changeover
- Input / Output ports (33 pins)
- Two 16 bit Timer / Counters
 - Timer, Event counter, Pulse width measurement, External trigger timer, Window modes
- Two 8 bit Timer / Counters
 - Timer, Event counter, Capture (Pulse width / duty measurement) modes

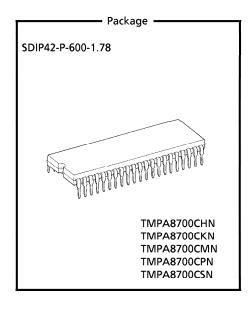
980910FRP1

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.
- entitied Quality and Reliability Assurance/Handling Precautions.

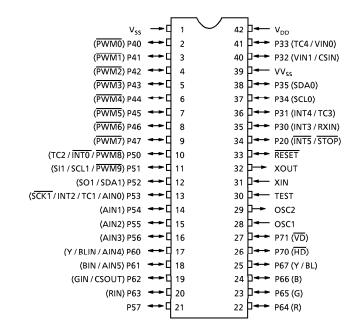

 TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

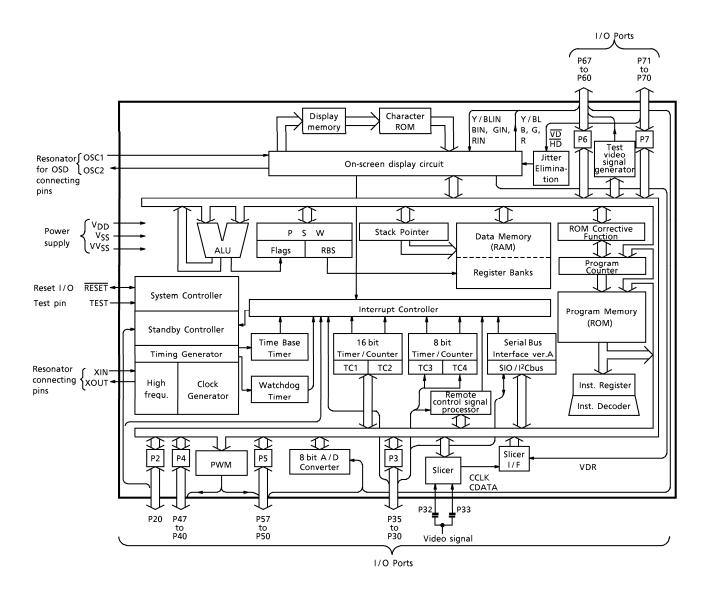
 The products described in this document are subject to the foreign exchange and foreign trade laws.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.




Purchase of TOSHIBA I² C components conveys a license under the Philips I² C Patent Rights to use these components in an I² C system, provided that the system conforms to the I² C Standard Specification as defined by Philips.

- **◆**Time Base Timer
 - Interrupt frequency: 1 Hz to 16384 Hz
- **♦**Watchdog Timer
- ◆Serial bus Interface
 - I²C-bus (Single master) / 8 bits SIO timeshared 2ch
- ◆On-screen display circuit
 - Character patterns : 251 charactersCharacter displayed : 32 columns 8 rows
 - Composition : 8 × 9 dots
 - Size of character : 3 kinds (Line by line)
 - Color of character : 7 kinds (Character by character)
 - Variable display position: Horizontal 128 steps, Vertical 256 steps
 - Fringing, Smoothing function
 - Conform to US CLOSED CAPTION DECODER REGULATION
- **◆**PWM outputs
 - 14 bit PWM output (1 channel)
 - 7 bit PWM outputs (9 channels)
- ◆8 bit successive approximate type A / D converter with sample and hold
 - 6 analog inputs
 - \bullet Conversion time : 23 μ s at 8 MHz
- ♦ High current outputs: LED direct drive capability (Typ. 20 mA × 4 bits).
- ◆Remote control signal processor
- ◆Data slicer circuit 1 ch
- ◆ Jitter elimination circuit
- ◆Test video signal generator
- ◆ROM corrective function
- ◆Two Power saving operating modes
 - STOP mode : Oscillation stops. Battery / Capacitor back-up. Port output hold / high-impedance.
 IDLE mode : CPU stops, and Peripherals operate using high-frequency clock. Release by interrupts.
- ◆Emulation Pod: BMA8700CSN0A


Pin Assignments (Top View)



Pin Assignments (Top View)

SDIP42-P-600-1.78

Block Diagram

Pin Function

Pin	Pin Name	Input / Output	Function			
No. 34	P20 (INT5 / STOP)	I/O (Input, Input)	1 bit input / output port with latch. When used as an input port, an interrupt input or STOP mode release signal input,	External interrupt input 5 / STOP mode		
	, ,		the latch must be set to "1". 6 bit programmable input / output port. (tri-state) Each bit	release signal input		
38	P35 (SDA0)	1/0 (1/0)	of this port can be individually as an input or an output	I ² C bus 0 serial data input / output		
37	P34 (SCL0)	1/0 (1/0)	under software control. During reset, all bits are configured	I ² C bus 0 serial clock input / output		
41	P33 (TC4 / VIN0)	I / O (Input, Input)	as inputs.	Timer / counter 4 input / Video signal input 0		
40	P32 (VIN1 / CSIN)	I/O (Input, Input)	When used as an input port, a timer / counter input, a	Video signal input 1 / Composite sync input		
36	P31 (INT4/TC3)	I/O (Input, Input)	remote control signal processor input, data slicer input, or an interrupt input, the pin must be set to the input mode. When used as a serial bus interface input / output, the pin	External interrupt input 4 / Timer / Counter 3 input		
35	P30 (INT3 / RXIN)	I/O (Input, Input)	must be set to the sink open drain mode, the latch must be set to "1", and the pin must be set to the output mode.	External interrupt input 3 / Remote control signal processor input		
9 to 3	P47 (PWM7) to P41 (PWM1)	I/O (Output)	8 bit programmable input / output port (tri-state). Each bit of this port can be individually as an input or an output under software control. During reset, all bits are configured	7 bit PWM outputs		
2	P40 (PWM0)	no (output)	as inputs. When used as a PWM output, the latch must be set to "1" and the pin must be set to the output mode.	14 bit PWM output		
21	P57	1/0	8 bit programmable input / output port. (tri-state)			
16 to 14	P56 (AIN3) to P54 (AIN1)	I/O (Input)	Each bit of this port can be individually as an input or an output under software control. During reset, all bits are	A / D converter analog input		
13	P53 (AIN0 / TC1 / INT2 / SCK1)	I/O (Input, Input, Input, I/O)	configured a as inputs. When used as an input port, a serial bus interface input, the pin must be set to the input mode. When used as a PWM	A / D converter analog input / Timer / Counter 1 input / External interrupt input / SIO1 serial clock data input		
12	P52 (SDA1 / SO1)	I/O (I/O, Output)	output, serial bus interface output, the latch must be set to "1", and the pin must be set to the output mode.	I ² C bus 1 serial data input / output SIO1 serial data output I ² C bus 1 serial clock input / output / 7 bit PWM outputs/SIO1 serial data input		
11	P51 (PWM9 / SCL1 / SI1)	I/O (Output, I/O, Input)	When used as a serial bus interface input / output, the pin must be set to the sink open drain mode, the latch must be			
10	P50 (PWM8 / INTO / TC2)	I/O (Output, Input, Input)	set to "1", and the pin must be set to the output mode.	7 bit PWM outputs / External interrupt input 0 / Timer / Counter 2 input		
27	P71 (VD)	I/O (Input)	2 bit input / output port with latch. When used as an input port, a vertical synchronous signal input, or a horizontal	Vertical synchronous signal input		
26	P70 (HD)	Tr o (input)	synchronous signal input, the latch must be set to "1".	Horizontal synchronous signal input		
25	P67 (Y / BL)		019			
24	P66 (B)	I/O (Output)	8 bit programmable input / output port (tri-state, P63 to P60 : High current output). Each bit of this port can be	R, G, B, Y / BL output		
23	P65 (G)		individually as an input or an output under software	·		
22	P64 (R)	L (O (los os et)	control. During reset, all bits are configured as inputs.	······		
	P63 (RIN)	I/O (Input)	When P67 to P64 ports are used as output port, bits 7 to 4 of	Tort video signal generator autout		
19 18	P62 (GIN / CSOUT) P61 (BIN / AIN5)	I/O (Input/Output) I/O (Input/Input)	address 0F91 _H must be set to "1". When P63 to P60 port used as RIN, GIN, BIN, Y / BLIN input,	G, B, Y / BL Test video signal generator output		
17	P60 (Y / BLIN / AIN4)	I/O (Input/Input)	these ports must be set to the input mode.	input A / D converter analog input		
28, 29	OSC1, OSC2 XIN, XOUT	Input, Output	Resonator connecting pin of on-screen display circuit Resonator connecting pin (High frequency). For external clock input, XIN is used and XOUT is opened.			
33	RESET	1/0	Reset signal input or watchdog timer output / address-trap-re	set output / system-clock-reset output.		
30	TEST	Input	Test pin for out-going test. Be tied to low.			
42; 1,39	V_{DD} , V_{SS} , VV_{SS}	Power Supply	+5 V, 0 V (GND)			

Operational Description

1. CPU Core Functions

The CPU core consists of a CPU, a system clock controller, an interrupt controller, a watchdog timer, and ROM corrective function.

This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64 Kbytes of memory. Figure 1-1. shows the memory address maps of the A8700CH / CK / CM / CP / CS. In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I / O system, and all I / O registers are mapped in the SFR / DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

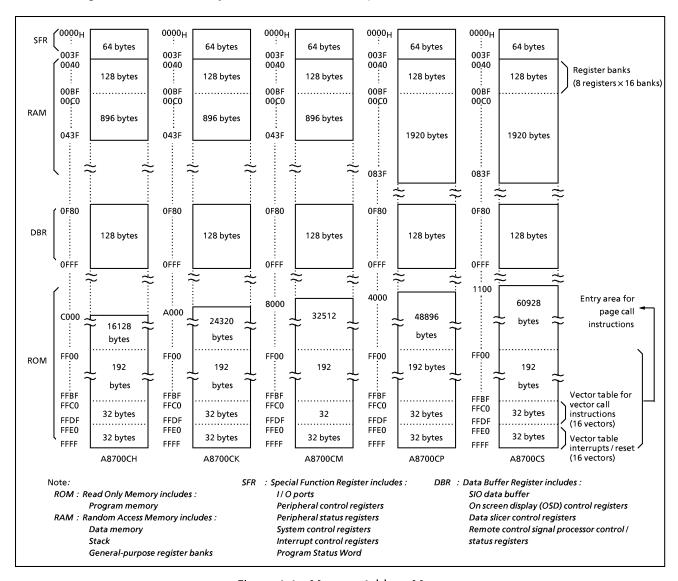


Figure 1-1. Memory Address Map

Electrical Characteristics

Absolute Maximum Ratings (V_{SS} = 0 V)

Parameter	Symbol	Condition	Rating	Unit	
Supply Voltage	V _{DD}	_	– 0.3 to 6.5	٧	
Input Voltage	V _{IN}	_	-0.3 to V _{DD} + 0.3	٧	
Output Voltage	V _{OUT1}	_	-0.3 to V _{DD} + 0.3	٧	
Output Current (Per 1pin)	I _{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	3.2	mA	
Output Current (Per 1pin)	I _{OUT2}	P60 to P63	30		
Output Compant (Tatal)	Σl _{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	120	A	
Output Current (Total)	ΣI _{OUT2}	P60 to P63	120	mA	
Power Dissipation [T _{opr} = 70°C]	P _D	_	600	mW	
Soldering Temperature (time)	T _{sld}	_	260 (10 s)	°C	
Storage Temperature	T _{stg}	_	– 55 to 125	°C	
Operating Temperature	T _{opr}	_	– 30 to 70	°C	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Te	st Condition	Min	Max	Unit
			_	NORMAL mode	4.5		
Supply Voltage	V_{DD}	_	fc = 8 MHz	IDLE mode	4.5	5.5	v
			0.02	STOP mode	2.0		
	V _{IH1}	Except hysteresis input	V _{DD} ≥ 4.5	V	V _{DD} ×0.70		
Input High Voltage	V _{IH2}	Hysteresis input	ysteresis input $V_{DD} \times 0.75$ V_{DD}	v			
	V _{IH3}	_	V _{DD} < 4.5	V	V _{DD} × 0.90	++	
	V _{IL1}	Except hysteresis input	$V_{DD} \ge 4.5 V$		0	V _{DD} × 0.30	v
Input Low Voltage	V _{IL2}	Hysteresis input	VDD = 4.3	V _{DD} × 0.25			
	V _{IL3}	_	V _{DD} < 4.5	V		V _{DD} × 0.10	
	fc	XIN, XOUT	V _{DD} = 4.5 to 5.5 V			8.0	
Clock Frequency	f	0561 0563	V _{DD} = 4.5	Double frequency mode (FORS = 1)	2	6	MHz
	fosd	OSC1, OSC2	to 5.5 V	Normal freguency mode (FORS = 0)	2	12	

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: fc: The condition of power supply voltage is limited to NORMAL and IDLE mode.

Furthermore, since the CPU clock serves dual purposes as a clock for the CCD slier, always be sure to use an 8 MHz oscillator.

Electrical Characteristics

D.C. Characteristics $(V_{SS} = 0 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs	_	_	_	0.9	_	٧
	I _{IN1}	TEST	_	V _{DD} = 5.5 V, V _{IN} = 5.5 V / 0V	_	_	± 2	
Input Current	I _{IN2}	Open drain ports	_	$V_{DD} = 5.5 \text{ V},$ $V_{IN} = 5.5 \text{ V} / 0 \text{ V}$	_	_	± 2	μ A
	I _{IN3}	Tri-state ports		$V_{DD} = 5.5 V$,				
	I _{IN4}	RESET, STOP] —	$V_{IN} = 5.5 \text{ V} / 0 \text{ V}$	_	_	± 2	
Input Resistance	R _{IN2}	RESET	_	_	100	220	450	kΩ
Output Leakage Current	I _{LO}	Open drain ports and tri-state ports	_	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	_	_	2	μΑ
Output High Voltage	V _{OH2}	Tri-state ports	_	$V_{DD} = 4.5 \text{ V},$ $I_{OH} = -0.7 \text{ mA}$	4.1	_	_	V
Output Low Voltage	V _{OL}	Except XOUT, OSC2, P60 to 63	_	$V_{DD} = 4.5 V$, $I_{OL} = 1.6 \text{ mA}$	_	_	0.4	V
Output Low Current	I _{OL3}	P60 to P63	_	V _{DD} = 4.5 V, V _{OL} = 1.0 V	_	20		mA
Supply Current in NORMAL Mode				$V_{DD} = 5.5 V$ (Note 3)	_	13	25	mA
Supply Current in IDLE Mode	I _{DD}	_	_	fc = 8 MHz V _{IN} = 5.3 V / 0.2 V	_	8	18	mA
Supply Current in STOP Mode				$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$	_	0.5	10	μA

Note 1: Typical values show those at $Topr = 25^{\circ}C$, VDD = 5 V.

Note 2: Input Current: The current through pull-up or pull-down resistor is not included.

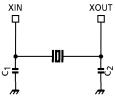
Note 3: Typical current consumption during A / D conversion is 1.2 mA.

A/D Conversion Characteristics $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

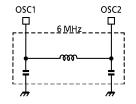
Parameter	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Analog Reference Voltage	VAREF	_	_	_	V_{DD}	_	V
	V _{ASS}		_	_	0	_	
Analog Reference Voltage Range	ΔV_{AREF}	_	$=V_{DD}-V_{SS}$	_	V_{DD}	_	٧
Analog Input Voltage	VAIN	_	_	Vss	_	V_{DD}	٧
Nonlinearity Error	_	_		_	_	± 1	LSB
Zero Point Error	_	_) , 45+-55V	_	_	± 2	LSB
Full Scale Error	_	_	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	_	_	± 2	LSB
Total Error		_		_	_	±3	LSB

Note: Total error does not include quantization error.

A.C. Chracteristics


 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Machine Cycle Time	An.		In NORMAL mode		0.5		
Machine Cycle Time	tcy	_	In IDLE mode	_			μS
High Level Clock Pulse Width	t _{WCH}		For external clock operation	62.5			20
Low Level Clock Pulse Width	twcL		(XIN input), fc = 8 MHz	02.5		_	ns


Recommended Oscillating

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Oscillator	Frequency	Recommended Oscillator	Recommended Conditions	
		, ,		C ₁	C ₂
High-frequency	Ceramic Resonator	8 MHz	KYOCERA KBR8.0M	30 pF	30 pF
	Crystal Oscillator	8 MHz	TOYOCOM 210B 8.0000	20 pF	20 pF
OSD	LC Resonator	6 MHz	TOKO A285HCIS-13319 (5 mm)		
	LC Resonator	12 MHz	TOKO TA285HCIS-13306 (5 mm)	_	_

(2) LC Resonator for OSD

Note: An electrical shield by metal shield plate on the surface of the IC package should be recommendable in order to prevent the device from the high electric fieldstress applied from CRT (Cathode Ray Tube) for continuous reliable operation.