

Ultra-Small, Low on Resistance Load Switch with Controlled Turn-on

Check for Samples: TPS22912

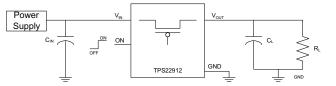
FEATURES

- Integrated Single Load Switch
- Ultra Small CSP-4 Package 0.9mm × 0.9mm, 0.5mm Pitch
- Input Voltage Range: 1.4-V to 5.5-V
- Low ON-Resistance
 - r_{ON} = 60-m Ω at VIN = 5-V
 - $r_{ON} = 61 m\Omega$ at VIN = 3.3-V
 - $r_{ON} = 74 m\Omega$ at VIN = 1.8-V
 - $r_{ON} = 84-m\Omega$ at VIN = 1.5-V
- 2-A Maximum Continuous Switch Current
- Low Threshold Control Input
- Controlled Slew-rate Options
- Under-Voltage Lock Out
- Reverse Current Protection

APPLICATIONS

- Portable Industrial / Medical Equipment
- Portable Media Players
- Point of Sales Terminals
- GPS Navigation Devices
- Digital Cameras
- Portable Instrumentation
- Smartphones / Wireless Handsets

DESCRIPTION


The TPS22912 is a small, low r_{ON} load switch with controlled turn-on and contains a P-channel MOSFET that can operate over an input voltage range of 1.4 V to 5.5 V. The switch is controlled by a high input (ON), which is capable of interfacing directly with low-voltage control signals.

The slew rate of the device is internally controlled in order to avoid inrush current. The TPS22912 family has various rise time options and is active high enable. (see Table 1).

The TPS22912 provides circuit breaker functionality by latching off the power switch during reverse voltage situations. An internal reverse voltage comparator disables the power switch when the output voltage (V_{OUT}) is higher than the input (V_{IN}). This process quickly (10µs typical) stops the flow of current towards the input side of the switch. Reverse current protection is always active, even when the device is disabled. Additionally, under-voltage lockout (UVLO) protection turns the switch off if the input voltage is too low.

The TPS22912 is available in a ultra-small, spacesaving 4-pin CSP package and is characterized for operation over the free-air temperature range of -40°C to 85°C.

TYPICAL APPLICATION

Table 1. Feature List

DEVICE	r _{ON} (typ) at 3.3 V	RISE TIME at 3.3V (typ)	QUICK OUTPUT DISCHARGE ⁽¹⁾	MAXIMUM OUTPUT CURRENT	ENABLE
TPS22912A ⁽²⁾	61 mΩ	1 µs	No	2-A	Active High
TPS22912B ⁽²⁾	61 mΩ	100 µs	No	2-A	Active High
TPS22912C	61 mΩ	1000 µs	No	2-A	Active High
TPS22912D ⁽²⁾	61 mΩ	4500 µs	No	2-A	Active High

(1) This feature discharges the output of the switch to ground through a 150- Ω resistor, preventing the output from floating.

(2) Contact local sales/distributor or factory for availability.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

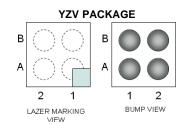
TPS22912

SLVSB78-APRIL 2012

Texas Instruments

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.


ORDERING INFORMATION

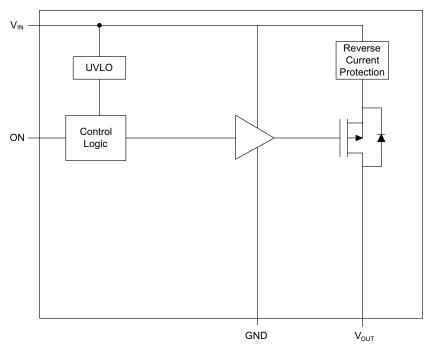
T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING/ STATUS ⁽²⁾
–40°C to 85°C	YZV (0.5mm pitch)	Tape and Reel	TPS22912AYZVR	Contact factory for availability
–40°C to 85°C	YZV (0.5mm pitch)	Tape and Reel	TPS22912BYZVR	Contact factory for availability
–40°C to 85°C	YZV (0.5mm pitch)	Tape and Reel	TPS22912CYZVR	78
-40°C to 85°C	YZV (0.5mm pitch)	Tape and Reel	TPS22912DYZVR	Contact factory for availability

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

(2) Contact factory for details and availability for PREVIEW devices, minimum order quantities may apply.

DEVICE INFORMATION

TERMINAL ASSIGNMENTS


В	ON	GND
Α	V _{IN}	V _{OUT}
	2	1

PIN FUNCTIONS

TPS22912	PIN NAME	DESCRIPTION		
YZV		DESCRIPTION		
B1	GND	Ground		
B2	ON	Switch control input, active high. Do not leave floating		
A1	VOUT	Switch output		
A2	VIN	Switch input. Use ceramic capacitor to GND for bypass.		

BLOCK DIAGRAM

Table 2. FUNCTION TABLE

ON	VIN to VOUT
L	OFF
Н	ON

ABSOLUTE MAXIMUM RATINGS

			VALUE	UNIT		
V _{IN}	Input voltage range		-0.3 to 6	V		
V _{OUT}	Output voltage range		-0.3 to 6	V		
V _{ON}	Input voltage range	nput voltage range				
I _{MAX}	Maximum continuous switch curren	2	А			
I _{PLS}	Maximum pulsed switch current, p	3	А			
T _A	Operating free-air temperature ran	-40 to 85	°C			
TJ	Maximum junction temperature	125	°C			
T _{STG}	Storage temperature range		-65 to 150	°C		
T_{LEAD}	Maximum lead temperature (10-s s	300	°C			
F0D		Human-Body Model (HBM) (VIN, VOUT, GND pins)	2000			
ESD	Electrostatic discharge protection	Charged-Device Model (CDM) (VIN, VOUT, ON, GND pins)	1000	- V		

THERMAL INFORMATION

		TPS22912	
	THERMAL METRIC ⁽¹⁾	CSP	UNITS
		4 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	189.1	
θ _{JCtop}	Junction-to-case (top) thermal resistance	1.9	
θ_{JB}	Junction-to-board thermal resistance	36.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	11.3	°C/W
Ψјв	Junction-to-board characterization parameter	36.8	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953. **RECOMMENDED OPERATING CONDITIONS**

			MIN	MAX	UNIT
V _{IN}	Input voltage range		1.4	5.5	V
V _{ON}	ON voltage range	ON voltage range			
V _{OUT}	Output voltage range (Note: V _C device to trigger. See application		V_{IN} $^{(1)}$		
V	Ligh lovel input veltage ON	VIN = 3.61 V to 5.5 V		5.5	V
V _{IH}	High-level input voltage, ON	VIN = 1.4 V to 3.6 V	1.1	5.5	V
V		VIN = 3.61 V to 5.5 V		0.6	V
VIL	Low-level input voltage, ON	VIN = 1.4 V to 3. 6V		0.4	V
CIN	Input Capacitor		1 ⁽¹⁾		μF

(1) Refer to the application section.

ELECTRICAL CHARACTERISTICS

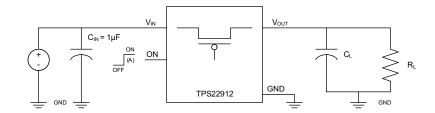
VIN = 1.4 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		$I_{OUT} = 0, V_{ON} = V_{IN} = 5.25 V$			2	10	
		$I_{OUT} = 0, V_{ON} = V_{IN} = 4.2 V$			2	7.0	
IN	Quiescent current	$I_{OUT} = 0, V_{ON} = V_{IN} = 3.6 V$	Full		2	7.0	μA
		$I_{OUT} = 0, V_{ON} = V_{IN} = 2.5 V$			0.9	5	
		I _{OUT} = 0, V _{ON} = V _{IN} = 1.5 V			0.7	5	
		$R_L = 1 M\Omega$, $V_{IN} = 5.25 V$, $V_{ON} = GND$			1.2	10	
		$R_L = 1 M\Omega$, $V_{IN} = 4.2 V$, $V_{ON} = GND$			0.2	7.0	
I _{IN(off)} ⁽¹⁾	Off supply current	R_L = 1 M Ω , V_{IN} = 3.6 V, V_{ON} = GND	Full		0.1	7.0	μA
		$R_L = 1 M\Omega$, $V_{IN} = 2.5 V$, $V_{ON} = GND$			0.1	5	
		$R_L = 1 M\Omega$, $V_{IN} = 1.5 V$, $V_{ON} = GND$			0.1	5	
		V _{OUT} = 0, V _{IN} = 5.25 V, V _{ON} = GND			1.2	10	
		V _{OUT} = 0, V _{IN} = 4.2 V, V _{ON} = GND			0.2	7.0	
I _{IN(Leakage)}	Leakage current	V _{OUT} = 0, V _{IN} = 3.6 V, V _{ON} = GND	Full		0.1	7.0	μA
(0,		V _{OUT} = 0, V _{IN} = 2.5 V, V _{ON} = GND			0.1	5	
		$V_{OUT} = 0$, $V_{IN} = 1.5$ V, $V_{ON} = GND$			0.1	5	
					60	80	
		$V_{IN} = 5.25 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full			110	
			25°C		60	80	
		$V_{IN} = 5.0 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full			110	
			25°C		60	80	mΩ
		$V_{IN} = 4.2 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full			110	
			25°C		60.7	80	
r _{ON}	On-resistance	V _{IN} = 3.3 V, I _{OUT} = -200 mA	Full			110	
			25°C		63.4	90	
		$V_{IN} = 2.5 \text{ V}, \text{ I}_{OUT} = -200 \text{ mA}$	Full			120	
			25°C		74.2	100	
		V _{IN} = 1.8 V, I _{OUT} = -200 mA	Full			130	
			25°C		83.9	120	
		V _{IN} = 1.5 V, I _{OUT} = -200 mA	Full			150	
		V_{IN} increasing, V_{ON} = 3.6 V, I_{OUT} = -100 mA	– "			1.2	.,
UVLO	Under voltage lockout	V_{IN} decreasing, V_{ON} = 3.6 V, I_{OUT} = -100 mA	- Full -	0.50			V
I _{ON}	ON input leakage current	V _{ON} = 1.4 V to 5.25 V or GND	Full			1	μA
V _{RCP}	Reverse Current Voltage Threshold	V _{OUT} > V _{IN}	25°C		54		mV
I _{RCP} (leak)	Reverse Current Protection Leakage after Reverse Current event	$V_{OUT} - V_{IN} > V_{RCP}$	25°C		0.3		μA
t _{DELAY}	Reverse Current Response Delay	V _{IN} = 5V			10		μs
-		-					

(1) Verified by characterization, not production tested.

TPS22912

SLVSB78-APRIL 2012



www.ti.com


SWITCHING CHARACTERISTICS

		TEST CONDITION	TPS22912	
	PARAMETER	TEST CONDITION	ТҮР	UNIT
VIN = 5	5 V, T _A = 25ºC (unless otherwise noted	(k		
t _{ON}	Turn-ON time	$R_L = 10 \Omega, C_L = 0.1 \mu F$	840	
t _{OFF}	Turn-OFF time	$R_{L} = 10 \ \Omega, \ C_{L} = 0.1 \ \mu F$	6.6	
t _R	VOUT rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	912	μs
t _F	VOUT fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	3	
VIN = 3	3.3 V, T _A = 25⁰C (unless otherwise not	ed)		
t _{ON}	Turn-ON time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	1147	
t _{OFF}	Turn-OFF time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	8.6	
t _R	VOUT rise time	$R_L = 10 \Omega, C_L = 0.1 \mu F$	1030	μs
t _F	VOUT fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	3	
VIN = 1	I.5 V, T _A = 25ºC (unless otherwise not	ed)		
t _{ON}	Turn-ON time	$R_L = 10 \Omega, C_L = 0.1 \mu F$	2513	
t _{OFF}	Turn-OFF time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	17.4	
t _R	VOUT rise time	$R_L = 10 \Omega, C_L = 0.1 \mu F$	1970	μs
t _F	VOUT fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	6.5	

PARAMETRIC MEASUREMENT INFORMATION

TEST CIRCUIT

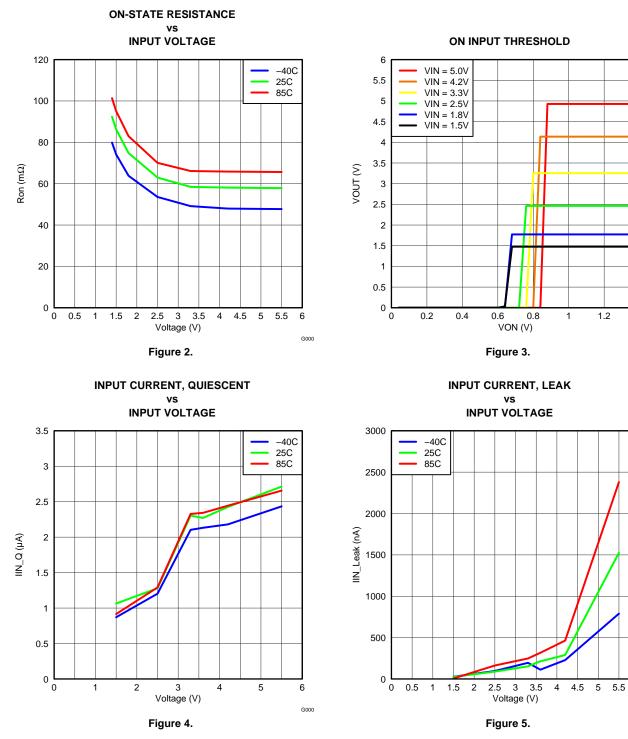
 $t_{\text{ON}}/t_{\text{OFF}}$ WAVEFORMS

(A) Rise and fall times of the control signal is 100ns.

A. Rise and fall times of the control signal are 100 ns.

Figure 1. Test Circuit and t_{ON}/t_{OFF} Waveforms

1.4


6

G000

G000

www.ti.com

TYPICAL CHARACTERISTICS

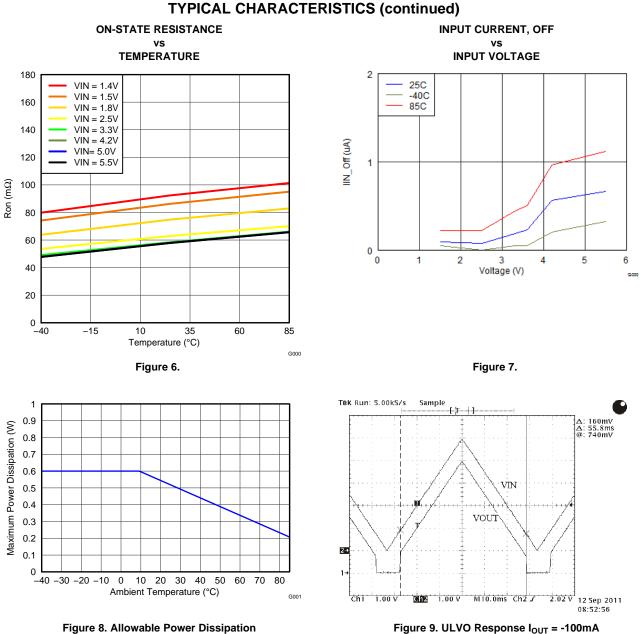


Figure 8. Allowable Power Dissipation

8

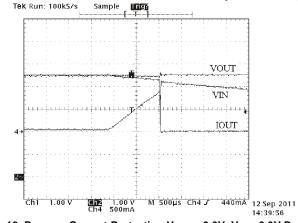
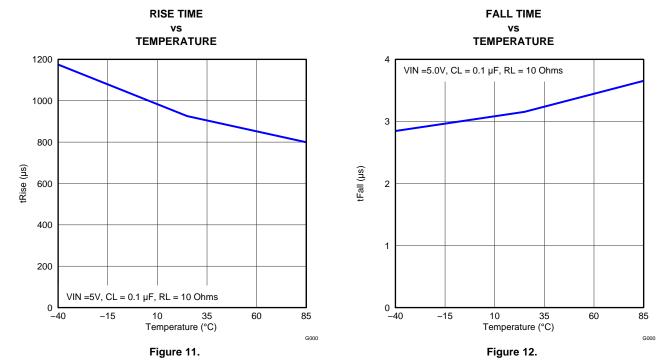
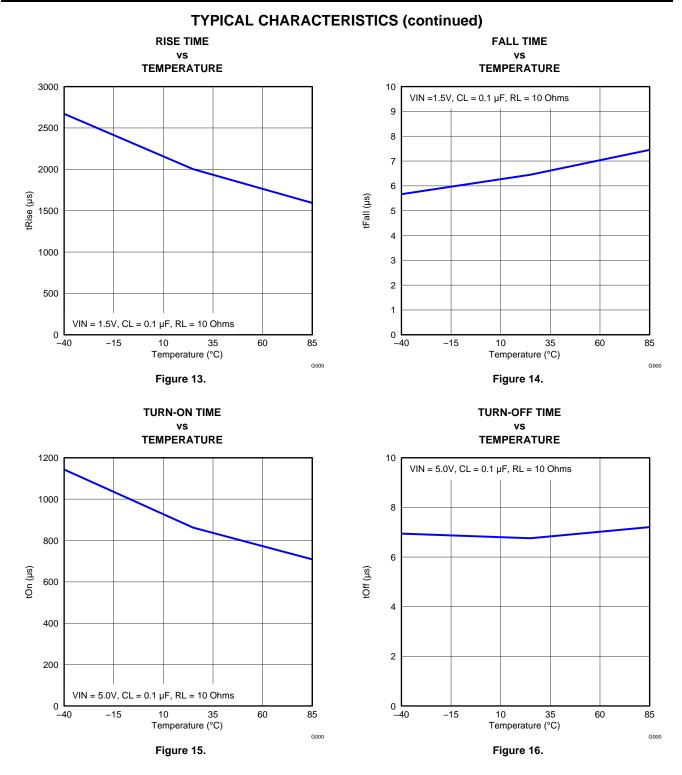
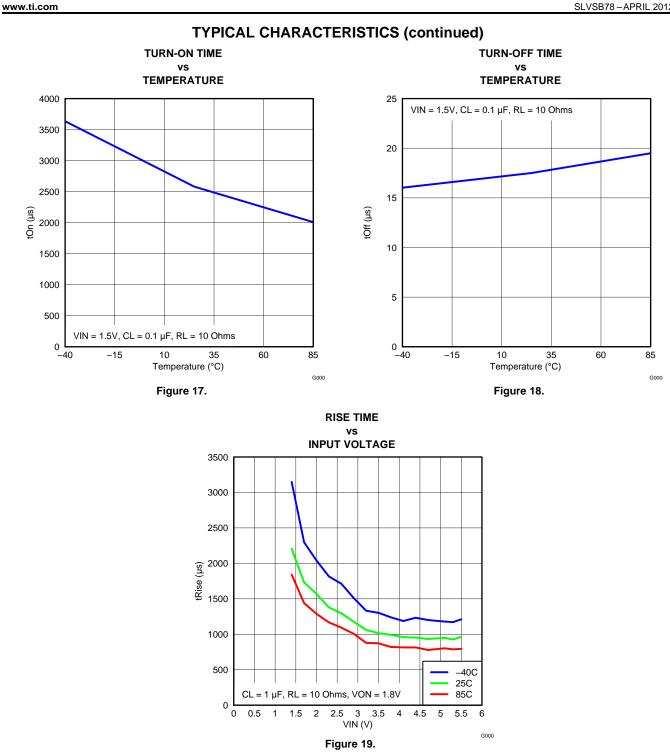
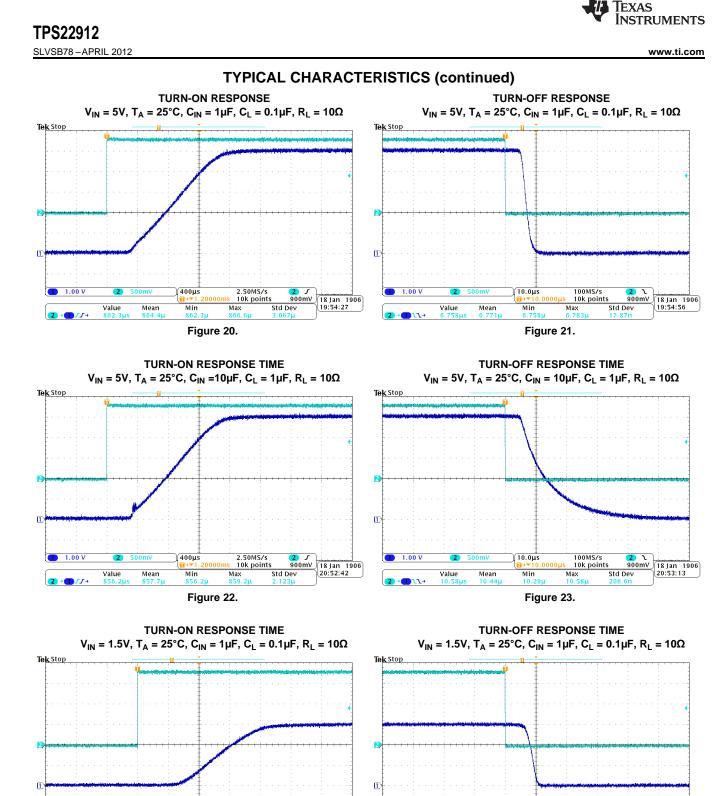



Figure 10. Reverse Current Protection V_{OUT} = 3.3V, V_{IN} = 3.3V Decreasing to 0V






TEXAS INSTRUMENTS

www.ti.com

Mean

500m

<u>,,</u>,,

Value

1.00MS/s 10k points

Max

Std Dev

2 J 900mV 18 Jan 1906

19:52:26

1.00ms

Min

Figure 24.

50.0MS/s 10k points

Max

Std Dev

2 900mV 18 Jan 1906 19:52:56

20.0µs

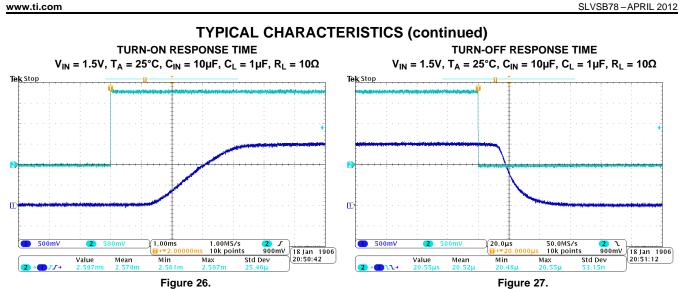

Min

Figure 25.

Value

Mean

APPLICATION INFORMATION

On/Off Control

The ON pin controls the state of the switch. Asserting ON high enables the switch. ON is active high and has a low threshold, making the pin capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V or 3.3-V GPIO.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush currents, a capacitor needs to be placed between VIN and GND. A 1- μ F ceramic capacitor, C_{IN}, placed close to the pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop.

Output Capacitor

A C_{IN} to C_L ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup. Devices with faster rise times may require a larger ratio to minimize V_{IN} dip.

Under-Voltage Lockout

Under-voltage lockout protection turns off the switch if the input voltage is below the under-voltage lockout threshold. During under-voltage lockout (UVLO), if the voltage level at V_{OUT} exceeds the voltage level at V_{IN} by the Reverse Current Voltage Threshold (V_{RVP}), the body diode will be disengaged to prevent any current flow to V_{IN} . With the ON pin active, the input voltage rising above the under-voltage lockout threshold will cause a controlled turn-on of the switch to limit current over-shoot.

Reverse Current Protection

In a scenario where V_{OUT} is greater than V_{IN} , there is potential for reverse current to flow through the pass FET or the body diode. The TPS22912 monitors V_{IN} and V_{OUT} voltage levels. When the reverse current voltage threshold (V_{RCP}) is exceeded, the switch is disabled (within 10µs typ). Additionally, the body diode is disengaged so as to prevent any reverse current flow to V_{IN} . The FET, and the output (V_{OUT}), will resume normal operation when the reverse current scenario is no longer present. The peak instantaneous reverse current is the current it takes to trip the reverse current protection. After the reverse current protection has tripped due to the peak instantaneous reverse current, the DC (off-state) leakage current from V_{OUT} and V_{IN} is referred to as I_{RCP} (leak) (see figure below).

Use the following formula to calculate the amount of peak instantaneous reverse current for a particular application:

$$I_{RC} = \frac{V_{RCP}}{R_{ON(VIN)}}$$

Where,

I_{RC} is the amount of reverse current,

R_{ON(VIN)} is the on-resistance at the VIN of the reverse current condition.

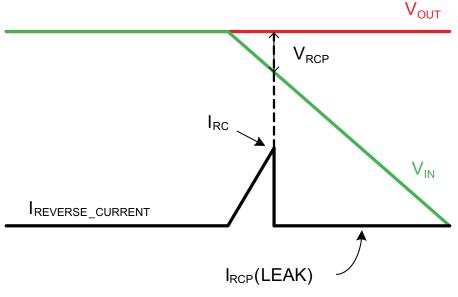


Figure 28. Reverse Current

Board Layout

For best performance, all traces should be as short as possible. The input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS22912CYZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
TPS22912CYZVT	ACTIVE	DSBGA	YZV	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

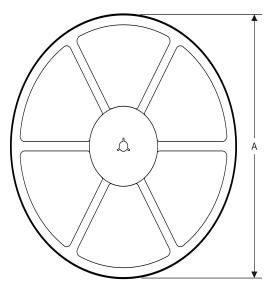
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

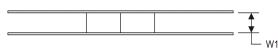
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

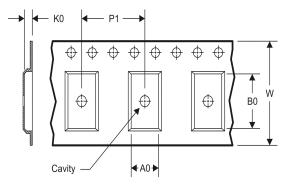
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

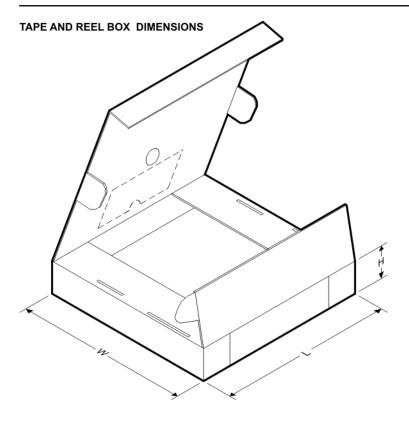
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

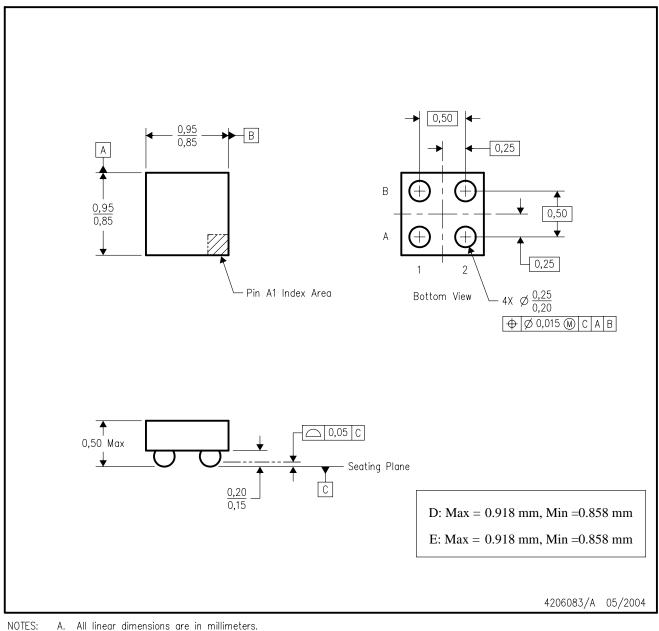

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22912CYZVR	DSBGA	YZV	4	3000	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22912CYZVT	DSBGA	YZV	4	250	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

18-Apr-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22912CYZVR	DSBGA	YZV	4	3000	220.0	220.0	35.0
TPS22912CYZVT	DSBGA	YZV	4	250	220.0	220.0	35.0

YZV (S-XBGA-N4)

DIE-SIZE BALL GRID ARRAY

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. NanoFree™ package configuration.
 - D. This package contains lead-free balls. Refer to the 4 YEV package (drawing 4206082) for tin-lead (SnPb) balls.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated