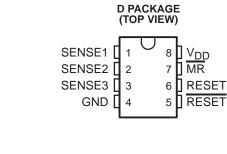
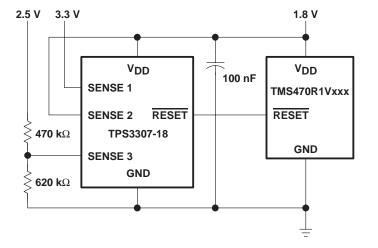
Temperature-Compensated Voltage

Maximum Supply Current of 40 µA

Supply Voltage Range ... 2 V to 6 V

Defined RESET Output from $V_{DD} \ge 1.1$ V


Temperature Range . . . –40°C to 125°C


SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008

- Qualified for Automotive Applications
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Triple Supervisory Circuits for DSP and Processor-Based Systems
- Power-On Reset Generator with Fixed Delay Time of 200 ms, No External Capacitor Needed

typical applications

Figure 1 lists some of the typical applications for the TPS3307 family, and a schematic diagram for a processor-based system application. This application uses TI part numbers TPS3307–18 and TMS470R1Vxxx.

- Automotive applications using DSPs, Microcontrollers or Microprocessors
- Industrial Equipment
- Programmable Controls
- Automotive Systems

Figure 1. Applications Using the TPS3307-18

Reference

SO-8 Package

description

The TPS3307-18 is a micropower supply voltage supervisor designed for circuit initialization primarily in automotive DSP and processor-based systems, which require more than one supply voltage.

The TPS3307-18 is designed for monitoring three independent supply voltages: 3.3 V/1.8 V/adj,. The adjustable SENSE input allows the monitoring of any supply voltage >1.25 V.

The various supply voltage supervisors are designed to monitor the nominal supply voltage as shown in the following supply voltage monitoring table.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2008, Texas Instruments Incorporated

SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008

description (continued)

	NOMINA	AL SUPERVISED	VOLTAGE	THRESHOLD VOLTAGE (TYP)					
DEVICE	SENSE1	SENSE2	SENSE3	SENSE1	SENSE2	SENSE3			
TPS3307-18	3.3 V	1.8 V	User defined	2.93 V	1.68 V	1.25 V†			

SUPPLY VOLTAGE MONITORING

[†] The actual sense voltage has to be adjusted by an external resistor divider according to the application requirements.

During power-on, $\overline{\text{RESET}}$ is asserted when the supply voltage V_{DD} becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors the SENSEn inputs and keeps $\overline{\text{RESET}}$ active as long as SENSEn remain below the threshold voltage V_{IT+}.

An internal timer delays the return of the RESET output to the inactive state (high) to ensure proper system reset. The delay time, $t_{d typ}$ = 200 ms, starts after all SENSEn inputs have risen above the threshold voltage V_{IT+} . When the voltage at any SENSE input drops below the threshold voltage V_{IT-} , the RESET output becomes active (low) again.

The TPS3307-18 incorporates a manual reset input, MR. A low level at MR causes RESET to become active. In addition to the active-low RESET output, the TPS3307-18 includes an active-high RESET output.

The device is available in a standard 8-pin SO package, and is characterized for operation over a temperature range of –40°C to 125°C.

ORDERING INFORMATION[†]

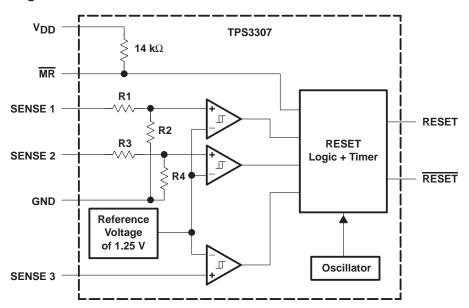
TA	PACKAGE [‡]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 125°C	Small Outline (D)	Tape and Reel	TPS3307-18QDRQ1	30718Q

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

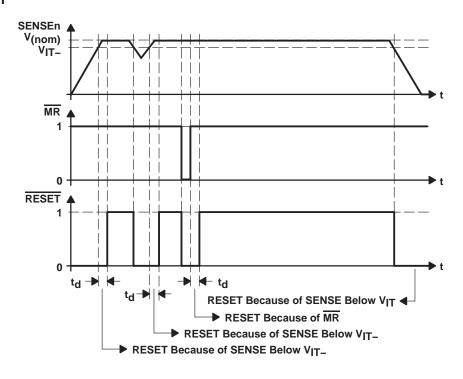
[‡]Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

MR	SENSE1>VIT1	SENSE2>VIT2	SENSE3>VIT3	RESET	RESET
L	Х	Х	Х	L	Н
Н	0	0	0	L	н
Н	0	0	1	L	н
н	0	1	0	L	н
н	0	1	1	L	н
н	1	0	0	L	н
н	1	0	1	L	н
н	1	1	0	L	н
н	1	1	1	н	L

FUNCTION/TRUTH TABLES


X = Don't care

PowerPAD is a trademark of Texas Instruments Incorporated.



SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008

functional block diagram

timing diagram

SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note1)	
Maximum low output current, I _{OL}	
Maximum high output current, IOH	
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{DD})	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$)	±20 mA
Continuous total power dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Soldering temperature	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be operated at 7 V for more than t = 1000 h continuously.

DISSIPATION RATING TAE	LE
------------------------	----

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C	T _A = 125°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING	POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW

recommended operating conditions at specified temperature range

	MIN	MAX	UNIT
Supply voltage, V _{DD}	2	6	V
Input voltage at MR and SENSE3, VI	0	V _{DD} +0.3	V
Input voltage at SENSE1 and SENSE2, VI	0	(V _{DD} +0.3)V _{IT} /1.25V	V
High-level input voltage at MR, VIH	0.7xV _{DD}		V
Low-level input voltage at MR, VIL		0.3×V _{DD}	V
Input transition rise and fall rate at \overline{MR} , $\Delta t / \Delta V$		50	ns/V
Operating free-air temperature range, T _A	-40	125	°C

SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT		
			$V_{DD} = 2 V \text{ to } 6 V,$	I _{OH} = -20 μA	V _{DD} - 0.2V				
∨он	High-level output voltage	V _{DD} = 3.3 V,	I _{OH} = -2 mA	V _{DD} - 0.4V			V		
			V _{DD} = 6 V,	I _{OH} = -3 mA	V _{DD} - 0.4V				
			$V_{DD} = 2 V \text{ to } 6 V,$	I _{OL} = 20 μA			0.2		
VOL	Low-level output voltage		V _{DD} = 3.3 V,	$I_{OL} = 2 \text{ mA}$			0.4	V	
		V _{DD} = 6 V,	I _{OL} = 3 mA			0.4			
	Power-up reset voltage (see Note 2)		$V_{DD} \ge 1.1 \text{ V},$	I _{OL} = 20 μA			0.4	V	
						1.25	1.29	V	
VIT-	Negative-going input threshold voltage (see Note 3)	VSENSE2	$V_{DD} = 2 V \text{ to } 6 V,$ $T_A = -40^{\circ}C \text{ to } 125$		1.6	1.68	1.73		
	(see note 5)	VSENSE1	$T_{A} = -40 \text{ C} \ 10 \ 123$	2.8	2.93	3.02	V		
			V _{IT} = 1.25 V		2	10	30		
V _{hys}	Hysteresis at VSENSEn input		V _{IT} = 1.68 V		2	15	40	mV	
,			V _{IT} = 2.93 V		3	30	60		
		MR	$\overline{\text{MR}} = 0.7 \times \text{V}_{\text{DD}},$	$V_{DD} = 6 V$		-130	-180		
	I Pak Jacob Sand America	SENSE1	VSENSE1 = V _{DD}	= 6 V		5	8	•	
ΙΗ	High-level input current	SENSE2	VSENSE2 = V _{DD} = 6 V			6	9	μA	
		SENSE3	VSENSE3 = V_{DD}		-1		1		
	Level and Second compared	MR	$\overline{MR} = 0 V,$	$V_{DD} = 6 V$		-430	-600	•	
۱L	Low-level input current SENSEn		VSENSE1,2,3 = 0	V	-1		1	μA	
IDD	Supply current						40	μΑ	
Ci	Input capacitance		$V_{I} = 0 V \text{ to } V_{DD}$			10		pF	

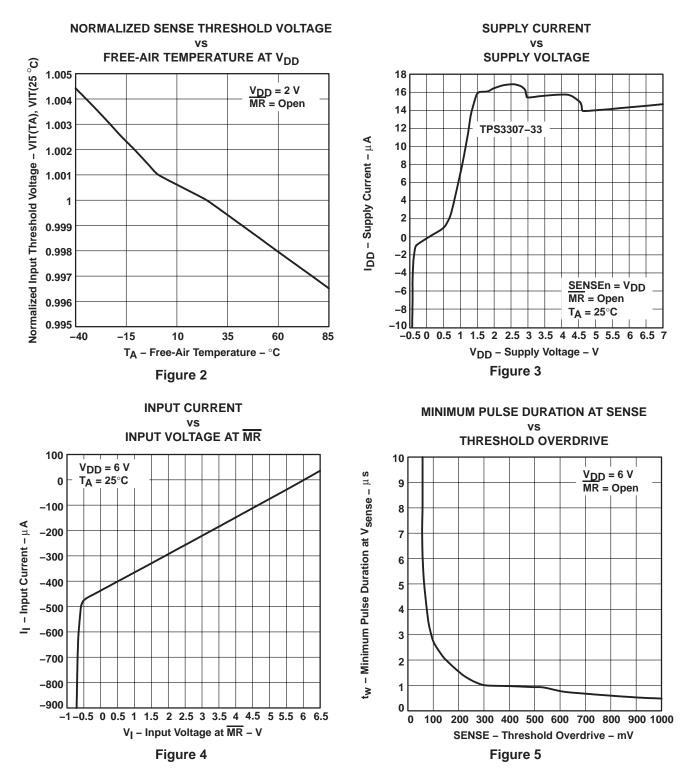
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTES: 2. The lowest supply voltage at which RESET becomes active. t_r , $V_{DD} \ge 15 \ \mu s/V$

3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic 0.1 µF) should be placed close to the supply terminals.

SGLS136A – NOVEMBER 2002 – REVISED APRIL 2008

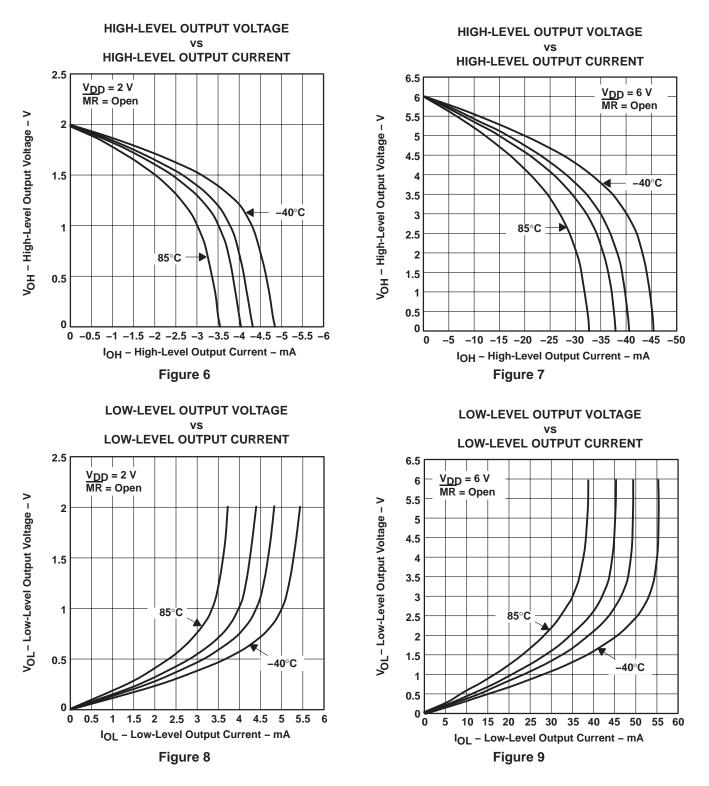
timing requirements at V_DD = 2 V to 6 V, R_L = 1 M\Omega, C_L = 50 pF, T_A = 25 $^\circ \text{C}$


PARAMETER TEST CONDITIONS						TYP	MAX	UNIT
		SENSEn	$V_{SENSEnL} = V_{IT-} - 0.2 V,$	VSENSEnH = VIT+ +0.2 V	6	10		μs
۱W	Pulse width	MR	$V_{IH} = 0.7 \times V_{DD},$	$V_{IL} = 0.3 \times V_{DD}$	100	150		ns

switching characteristics at V_DD = 2 V to 6 V, R_L = 1 M\Omega, C_L = 50 pF, T_A = 25 ^{\circ}C

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t d	Delay time		$\frac{V_{I(SENSEn)} \ge V_{IT+} + 0.2 \text{ V,}}{MR} \ge 0.7 \times V_{DD}, \text{ See timing diagram}$	140	200	280	ms
^t PHL	Propagation (delay) time, high-to-low level output	MR to RESET MR to RESET	VI(SENSEn) ≥ VIT+ +0.2 V,				
^t PLH	Propagation (delay) time, low-to-high level output	MR to RESET MR to RESET	$V_{IH} = 0.7 \times V_{DD}, V_{IL} = 0.3 \times V_{DD}$		200	600	ns
^t PHL	Propagation (delay) time, high-to-low level output	SENSEn to RESET	VIH = VIT+ +0.2 V, VIL = VIT0.2 V,			_	
^t PLH	Propagation (delay) time, low-to-high level output	SENSEn to RESET	$\frac{1}{MR} \ge 0.7 \times V_{DD}$		1	5	μs

SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008



TYPICAL CHARACTERISTICS

SGLS136A - NOVEMBER 2002 - REVISED APRIL 2008

TYPICAL CHARACTERISTICS

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS3307-18QDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPS3307-18QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS3307-18-Q1 :

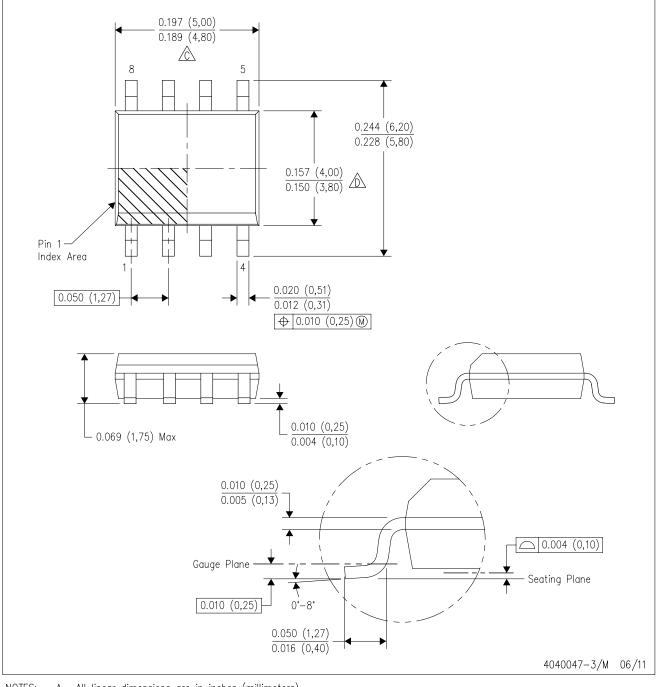
• Catalog: TPS3307-18

• Enhanced Product: TPS3307-18-EP

www.ti.com

23-May-2012

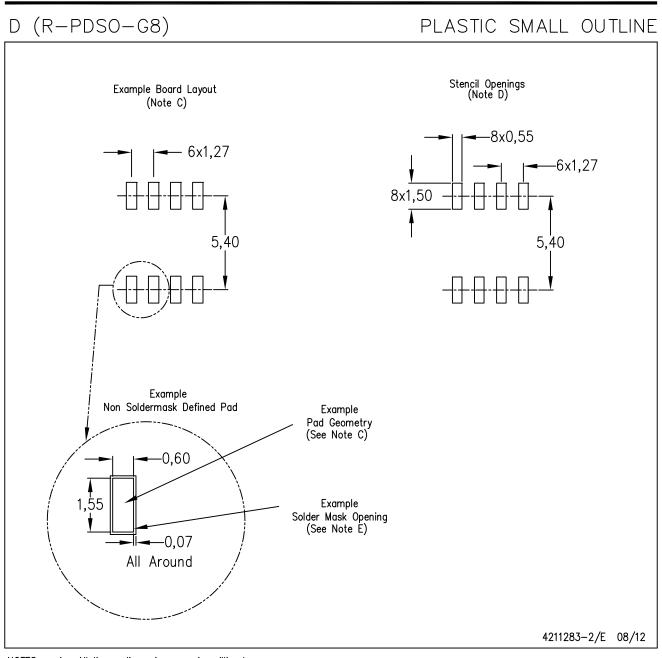
• Military: TPS3307-18M


NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated