
INTEGRATED CIRCUITS

Product specification Supersedes data of 1995 Mar 22 File under Integrated Circuits, IC02 1996 Sep 24

1996 Sep 24

1.3 GHz universal bus-controlled TV synthesizers

FEATURES

- Complete 1.3 GHz single chip system
- Four PNP band switch buffers (40 mA)
- 33 V output tuning voltage

Philips Semiconductors

- In-lock detector
- 5-step ADC
- 15-bit programmable divider
- Programmable reference divider ratio (512, 640 or 1024)
- Programmable charge-pump current (60 or 280 μA)
- Programmable automatic charge-pump current switch
- Varicap drive disable
- Universal bus protocol I²C-bus or 3-wire bus:
 - bus protocol for 18 or 19 bits transmission (3-wire bus)
 - extra protocol for 27 bits for test and features (3-wire bus)
 - address plus 4 data bytes transmission (I²C-bus write mode)
 - address plus 1 status byte transmission (I²C-bus read mode)
 - three independent I²C-bus addresses
- Low power and low radiation.

ORDERING INFORMATION

TYPE NUMBER		PACKAGE	
ITPE NUMBER	NAME	DESCRIPTION	VERSION
TSA5526M	SSOP16	plastic shrink small outline package; 16 leads; body width 4.4 mm	SOT369-1
TSA5526T	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
TSA5527M	SSOP16	plastic shrink small outline package; 16 leads; body width 4.4 mm	SOT369-1
TSA5527T	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
TSA5526AM	SSOP16	plastic shrink small outline package; 16 leads; body width 4.4 mm	SOT369-1
TSA5526AT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
TSA5527AM	SSOP16	plastic shrink small outline package; 16 leads; body width 4.4 mm	SOT369-1
TSA5527AT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1

APPLICATIONS

• VCR tuners.

TV tuners and front ends

TSA5526; TSA5527

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC1}	supply voltage (+5 V)		4.5	-	5.5	V
V _{CC2}	band switch supply voltage (12 V)		V _{CC1}	12	13.5	V
I _{CC1}	supply current		-	20	25	mA
I _{CC2}	band switch supply current	note 1	-	50	55	mA
f _{RF}	RF input frequency		64	-	1300	MHz
V _{i(RF)}	RF input voltage	f _i = 80 to 150 MHz	-25	-	3	dBm
		f _i = 150 to 1000 MHz	-28	-	3	dBm
		$f_i = 1000$ to 1300 MHz	-15	-	3	dBm
f _{xtal}	crystal oscillator input frequency		3.2	4.0	4.48	MHz
I _{o(PNP)}	PNP band switch buffers output current	note 2	4	-	50	mA
P _{tot}	total power dissipation	note 3	-	250	400	mW
T _{stg}	storage temperature		-40	-	+150	°C
T _{amb}	operating ambient temperature		-20	-	+85	°C

Notes

- 1. One band switch buffer ON, $I_0 = 40$ mA.
- 2. One band switch buffer ON, $I_0 = 40$ mA; two buffers ON, maximum sum of $I_0 = 50$ mA.
- 3. The power dissipation is calculated as follows:

 ${\sf P}_{\sf D} \,=\, {\sf V}_{\sf CC1} \,\times\, {\sf I}_{\sf CC1} \,+\, {\sf V}_{\sf CC2} \,\times\, (\,{\sf I}_{\sf CC2} \,-\, {\sf I}_{o}) \,+\, {\sf I}_{o} \,\times\, {\sf V}_{\sf CE\,(satPNP)} \,+\, (V33/2)^{\,2}/27 \,k\Omega.$

GENERAL DESCRIPTION

The device is a single-chip PLL frequency synthesizer designed for TV and VCR tuning systems. The circuit consists of a divide-by-eight prescaler with its own preamplifier, a 15-bit programmable divider, a crystal oscillator and its programmable reference divider and a phase/frequency detector combined with a charge-pump which drives the tuning amplifier and the 33 V output. Four high-current PNP band switch buffers are provided for band switching. Two PNP buffers can be switched on simultaneously. The sum of the collector currents is limited to 50 mA.

Depending on the reference divider ratio (512, 640 or 1024), the phase comparator operates at 3.90625 kHz, 6.25 kHz or 7.8125 kHz using a 4 MHz crystal.

The device can be controlled in accordance with the I²C-bus format or the 3-wire bus format depending on the voltage applied to the SW input (see Table 2). In the 3-wire bus mode (SW = HIGH) pin 12 is the LOCK output. The lock output is LOW when the PLL loop is locked. In the I²C-bus mode (SW = LOW) the LOCK detector bit FL is set to logic 1 when the loop is locked and is read on the SDA line (status byte) during a read operation. The ADC input is available on pin 12 for AFC control in the I²C-bus mode only. The ADC code is read during a read operation on the I²C-bus. In the test mode pin 12 is used as a test output for f_{ref} and $\frac{1}{2}f_{div}$ in the I²C-bus mode and the 3-wire bus mode (see Table 6).

When the automatic charge-pump current switch mode is activated, depending on the device given in Table 6, and when the loop is phase-locked, the charge-pump current value is automatically switched to LOW.

TSA5526; TSA5527

This action is taken to improve the carrier-to-noise ratio. The status of this feature can be read in the ACPS flag during a read operation on the I^2C -bus (see Table 8).

I²C-bus format (SW = LOW)

Five serial bytes (including address byte) are required to address the device, select the VCO frequency, program the four PNP band switch buffers, set the charge-pump current and the reference divider ratio.

The device has three independent l^2C -bus addresses which can be selected by applying a specific voltage on the CE input (see Table 5). The general address C2 is always valid. When the l^2C -bus format is fully used, TSA5526 and TSA5527 are equal.

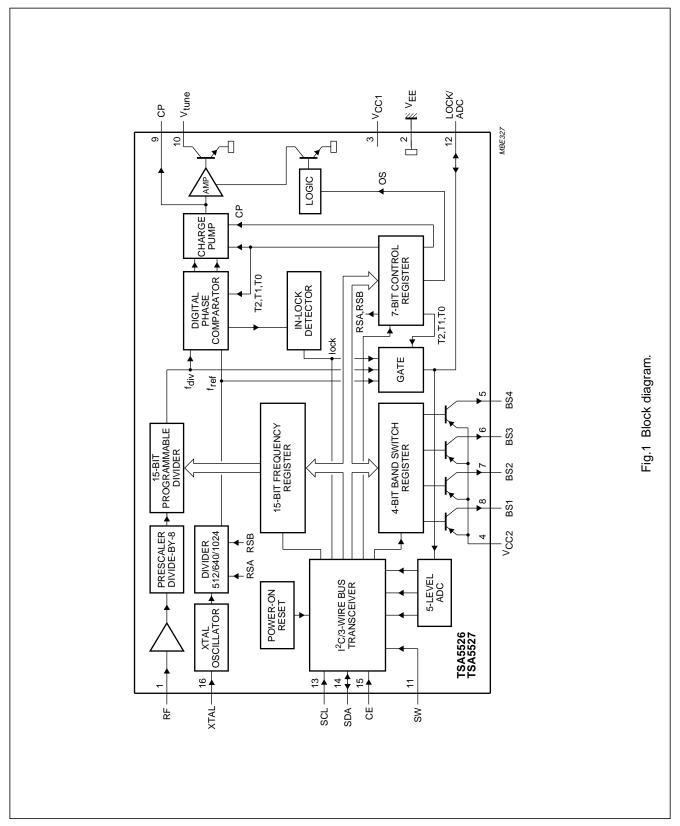
3-wire bus format (SW = V_{CC1} or open-circuit)

Data is transmitted to the device during a HIGH level on the CE input (enable line pin 15). The device is compatible with 18-bit and 19-bit data formats. The first four bits are used to program the PNP band switch buffers and the remaining bits are used to control the programmable divider. A 27-bit data format may also be used to set the charge-pump current, the reference divider ratio and for test purposes. The differences between TSA5526 and TSA5527 are given in Table 1.

When the 27-bit format is used, the TSA5526 and TSA5527 are equal and the reference divider is controlled by the RSA and RSB bits (see Table 7 and Figs 3, 4 and 5).

TYPE NUMBER	R DATA WORD REFERENCE DIVIDER		FREQUENCY STEP (kHz)	
TSA5526	18-bit	512 ⁽¹⁾	62.5	
TSA5526	19-bit	1024 ⁽¹⁾	31.25	
TSA5527	19-bit	640 ⁽²⁾	50	

 Table 1
 Differences between TSA5526 and TSA5527


Notes

1. The selection of the reference divider is given by an automatic identification of the data word length.

2. The reference divider is set to 640 at power-on reset.

TSA5526; TSA5527

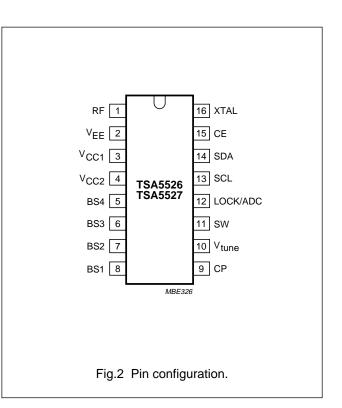
BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
RF	1	RF signal input
V _{EE}	2	ground
V _{CC1}	3	supply voltage (+5 V)
V _{CC2}	4	band switch supply voltage (+12 V)
BS4	5	PNP band switch buffer output 4
BS3	6	PNP band switch buffer output 3
BS2	7	PNP band switch buffer output 2
BS1	8	PNP band switch buffer output 1
СР	9	charge-pump output
V _{tune}	10	tuning voltage output
SW	11	bus format selection input, I ² C-bus or 3-wire
LOCK/ADC	12	lock detector output (3-wire bus/ ADC input (I ² C-bus)
SCL	13	serial clock input
SDA	14	serial data input/output
CE	15	chip enable/address selection input
XTAL	16	crystal oscillator input

FUNCTIONAL DESCRIPTION

The device is controlled via the I²C-bus or the 3-wire bus depending on the voltage applied to the SW input (pin 11). A HIGH level on the SW input enables the 3-wire bus inputs which are CE (Chip Enable), SDA (serial data input) and SCL (serial clock input). A LOW level on the SW input enables the I²C-bus inputs which are AS (Address Selection input), SDA (serial data input/output) and SCL (serial clock input). The bus format selection is given in Table 2.


I²C-bus mode (SW = LOW); see Table 3

WRITE MODE (R/W = 0)

Data bytes can be sent to the device after the address transmission (first byte). Four data bytes are required to fully program the device. The bus transceiver has an auto-increment facility which permits the programming of the device within one single transmission (address + 4 data bytes).

The device can also be partially programmed providing that the first data byte following the address is Divider Byte 1 (DB1) or the Control Byte (CB). The bits in the data bytes are defined in Table 3.

TSA5526; TSA5527

The first bit of the first data byte transmitted indicates whether frequency data (first bit = logic 0) or control and band switch data (first bit = logic 1) will follow. Until an l^2C -bus STOP command is sent by the controller, additional data bytes can be entered without the need to readdress the device. The frequency register is loaded after the 8th clock pulse of the second Divider Byte (DB2), the control register is loaded after the 8th clock pulse of the Control Byte (CB) and the band switch register is loaded after the 8th clock pulse of the Band switch Byte (BB).

I²C-BUS ADDRESS SELECTION

The module address contains programmable address bits (MA1 and MA0) which offer the possibility of having several synthesizers (up to 3) in one system by applying a specific voltage to the CE input.

The relationship between MA1 and MA0 and the input voltage applied to the CE input is given in Table 5.

TSA5526; TSA5527

Table 2Bus format selection

PIN	NAME	3-WIRE BUS MODE	I ² C-BUS MODE		
11	SW	OPEN or HIGH	LOW		
12	LOCK/ADC	LOCK/TEST output	ADC input/TEST output		
13	SCL	clock input	SCL input		
14	SDA	data input	SDA input/output		
15	CE	chip enable input	address selection input		

Table 3 I²C-bus data format

ВҮТЕ	MSB			LSB	SLAVE ANSWER				
Address Byte (ADB)	1	1	1 0 0 0 MA1 MA0						А
Divider Byte 1 (DB1)	0	N14	N13	N12	N11	N10	N9	N8	А
Divider Byte 2 (DB2)	N7	N6	N5	N4	N3	N2	N1	N0	A
Control Byte (CB)	1	CP	T2	T1	T0	RSA	RSB	OS	A
Band switch Byte (BB)	Х	Х	Х	Х	BS4	BS3	BS2	BS1	А

Table 4Description of Table 3

SYMBOL	DESCRIPTION
A	acknowledge
MA1 and MA0	programmable address bits (see Table 5)
N14 to N0	programmable divider bits; N = N14 \times 2 ¹⁴ + N13 \times 2 ¹³ + + N1 \times 2 + N0
СР	charge-pump current; $CP = 0 = 60 \ \mu A$; $CP = 1 = 280 \ \mu A$ (default)
T2 to T0	test bits (see Table 6); for normal operation $T2 = 0$, $T1 = 0$ and $T0 = 1$ (default)
RSA and RSB	reference divider ratio select bits (see Table 7)
OS	tuning amplifier control bit; for normal operation OS = 0 and tuning voltage is ON (default); when OS = 1 tuning voltage is OFF (high impedance)
BS4 to BS1	PNP band switch buffers control bits; when $BS_n = 0$ buffer n is OFF; when $BS_n = 1$ buffer n is ON
X	don't care

Table 5 I²C-bus address selection

VOLTAGE APPLIED TO THE CE INPUT (SW = LOW)	MA1	MA0
0 V to 0.1V _{CC1}	0	0
Always valid	0	1
0.4V _{CC1} to 0.6V _{CC1}	1	0
0.9V _{CC1} to V _{CC1}	1	1

Table 6 Test bits

T2	T1	Т0	TSA5526; TSA5527	TSA5526A; TSA5527A	REMARKS
0	0	0	normal operation with automatic charge-pump switch ON	automatic charge-pump switch OFF	
0	0	1	normal operation with automatic charge-pump switch OFF	automatic charge-pump switch ON	status at POR
0	1	Х	charge-pump is OFF	charge-pump is OFF	
1	1	0	charge-pump is sinking current	charge-pump is sinking current	
1	1	1	charge-pump is sourcing current	charge-pump is sourcing current	
1	0	0	f_{ref} is available at LOCK output	f _{ref} is available at LOCK output	the ADC cannot be used when test mode is active
1	0	1	$^{1/2}f_{div}$ is available at LOCK output	$^{1\!\!/_2}\!f_{div}$ is available at LOCK output	the ADC cannot be used when test mode is active

Table 7 Ratio select bits

RSA	RSB	REFERENCE DIVIDER
Х	0	640
0	1	1024
1	1	512

READ MODE (R/W = LOGIC 1); see Table 8

Data can be read from the device by setting the R/W bit to logic 1. After the slave address has been recognized, the device generates an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line (MSB first). Data is valid on the SDA line during a HIGH level of the SCL clock signal. A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a stop condition. The POR flag is set to logic 1 at power-on. The flag is reset when an end-of-data is detected by the device (end of a read sequence). Control of the loop is made possible with the in-lock flag (FL) which indicates when the loop is locked (FL = logic 1).

The Automatic Charge-Pump Switch flag (ACPS) is LOW when the automatic charge-pump switch mode is ON and the loop is locked. In other conditions ACPS = logic 1. When ACPS = logic 0, the charge-pump current is forced to the LOW value.

A built-in ADC is available at pin 12 (I²C-bus only). This converter can be used to apply AFC information to the microcontroller from the IF section of the television. The relationship between the bits A2 to A0 is given in Table 9.

BYTE	MSB			LSB	SLAVE ANSWER				
Address Byte (ADB)	1	1	0	0	0	MA1	MA0	R/W = 1	A ⁽¹⁾
Status Byte (SB)	POR ⁽²⁾	FL ⁽³⁾	ACPS ⁽⁴⁾	1	1	A2 ⁽⁵⁾	A1 ⁽⁵⁾	A0 ⁽⁵⁾	_

Notes

- 1. A = acknowledge.
- 2. POR = power-on reset flag (POR = logic 1 at power-on).
- 3. FL = in-lock flag (FL = logic 1 when the loop is locked).
- 4. ACPS = automatic charge-pump switch flag (active ACPS = logic 0; non-active ACPS = logic 1).
- 5. A2 to A0 = digital outputs of the 5-level ADC.

Table 9 ADC levels	Table 9	ADC	levels
--------------------	---------	-----	--------

VOLTAGE APPLIED AT ADC INPUT ⁽¹⁾	A2	A1	A0
0.6V _{CC1} to V _{CC1}	1	0	0
0.45V _{CC1} to 0.6V _{CC1}	0	1	1
$0.3V_{CC1}$ to $0.45V_{CC1}$	0	1	0
0.15V _{CC1} to 0.3V _{CC1}	0	0	1
0 to 0.15V _{CC1}	0	0	0

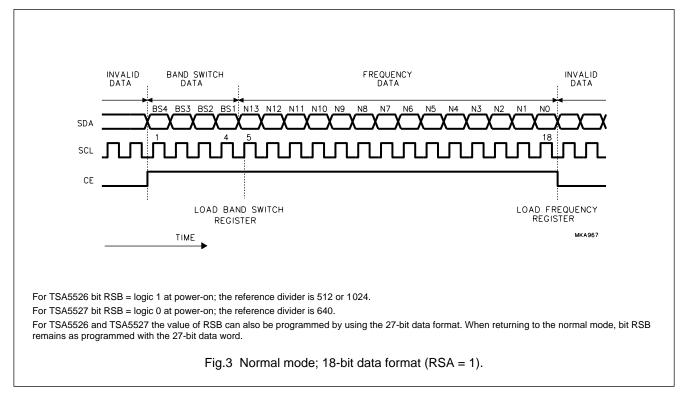
Note

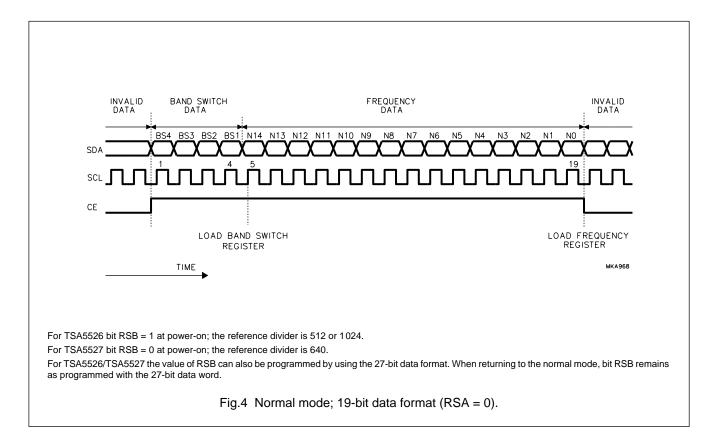
1. Accuracy is $\pm 0.03 V_{CC1}$.

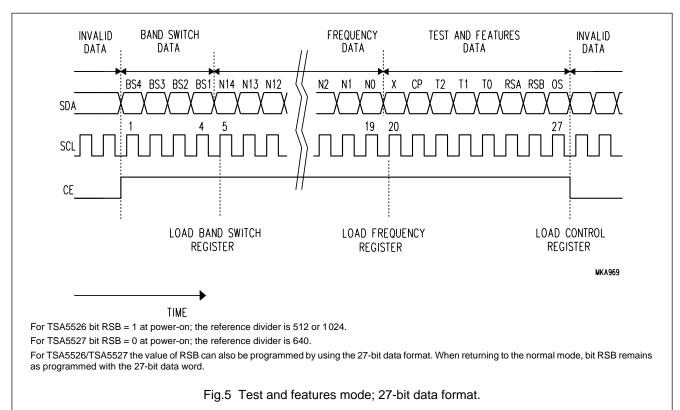
3-wire bus mode (SW = open-circuit or V_{CC1}); see Figs 3, 4 and 5

During a HIGH level on the CE input, the data is clocked into the data register at the HIGH-to-LOW transition of the clock pulse. The first four bits control the band switch buffers and are loaded into the internal band switch register on the 5th rising edge of the clock pulse. The frequency bits are loaded into the frequency register at the HIGH-to-LOW transition of the chip enable line when an 18-bit or 19-bit data word is transmitted.

At power-on the charge-pump current is set to 280 μ A, the tuning voltage output is disabled (V_{tune} = 33 V in


TSA5526; TSA5527


application; see Fig.12), the test bits T2, T1 and T0 are set to the 0 0 1 state in the normal mode with ACPS OFF for TSA55226; TSA5527 and ACPS ON for TSA5526A; TSA5527A. RSB is set to logic 1 (TSA5526) or logic 0 (TSA5527). When an 18-bit data word is transmitted, the most significant bit of the divider N14 is internally set to logic 0 and bit RSA is set to logic 1. When a 19-bit data word is transmitted, bit RSA is set to logic 0.


When a 27-bit word is transmitted, the frequency bits are loaded into the frequency register on the 20th rising edge of the clock pulse and the control bits at the HIGH-to-LOW transition of the chip enable line. In this mode, the reference divider is given by the RSA and RSB bits (see Table 7). The test bits T2, T1 and T0, the charge-pump bit CP, the ratio select bit RSB and the OS bit can only be selected or changed with a 27-bit transmission. They remain programmed if an 18-bit or a 19-bit transmission occurs. Only RSA is controlled by the transmission length when the 18-bit or 19-bit format is used.

A data word of less than 18 bits will not affect the frequency register of the device. The definition of the bits is unchanged compared to the l²C-bus mode.

The power-on detection threshold voltage V_{POR} is fixed to $V_{CC1} = 2$ V at room temperature. Below this threshold, the device is reset to the power-on state previously described.

TSA5526; TSA5527

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC1}	supply voltage; +5 V (pin 3)	-0.3	+6.0	V
V _{CC2}	band switch supply voltage; +12 V (pin 4)	-0.3	+16	V
V _{i(RF)}	prescaler input voltage (pin 1)	-0.3	V _{CC1}	V
V _{o(BSn)}	band switch buffers output voltage (pins 5 to 8)	-0.3	V _{CC2}	V
I _{o(BSn)}	band switch buffers output current	-1	+50	mA
V _{o(CP)}	charge-pump output voltage (pin 9)	-0.3	V _{CC1}	V
V _{o(tune)}	output tuning voltage (pin 10)	-0.3	+35	V
V _{i(SW)}	input switching voltage (pin 11)	-0.3	V _{CC1}	V
V _{o(LOCK)}	lock output voltage (pin 12)	-0.3	V _{CC1}	V
V _{i(SCL)}	serial clock input voltage (pin 13)	-0.3	+6.0	V
V _{i/o(SDA)}	serial data input/output voltage (pin 14)	-0.3	+6.0	V
I _{o(SDA)}	serial data output current	-1	+10	mA
V _{i(CE)}	chip enable input voltage (pin 15)	-0.3	+6.0	V
V _{i(xtal)}	crystal oscillator input voltage (pin 16)	-0.3	V _{CC1}	V
T _{stg}	storage temperature	-40	+150	°C
Tj	maximum junction temperature	-	+150	°C
t _{sc}	short-circuit time; every pin except pin 4 to pin 3 and every pin to pin 2; note 1	-	10	s

Note

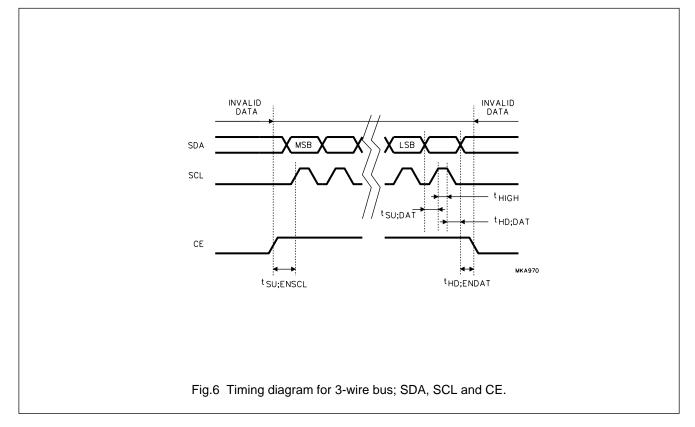
1. Short-circuit between V_{CC1} and V_{CC2} is allowed provided the voltage applied to V_{CC2} is less than the 6 V maximum rating at V_{CC1} .

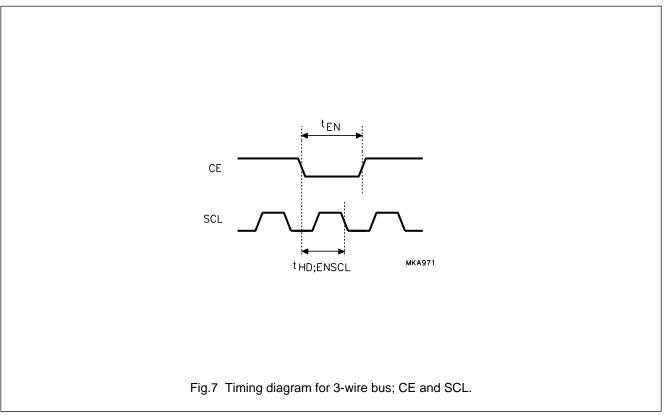
THERMAL CHARACTERISTICS

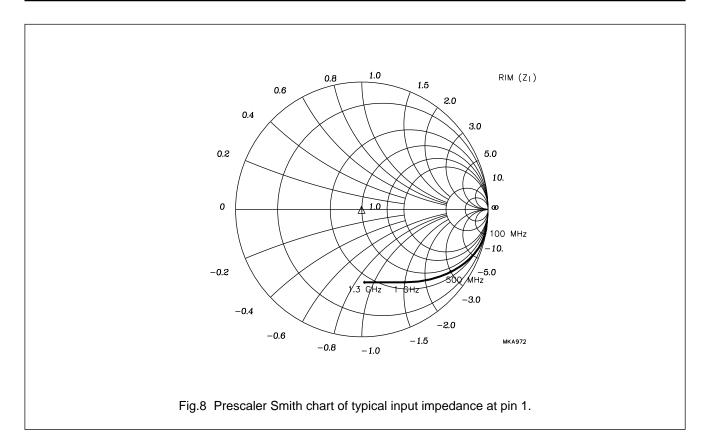
SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air		
	SO16	110	K/W
	SSOP16	142	K/W

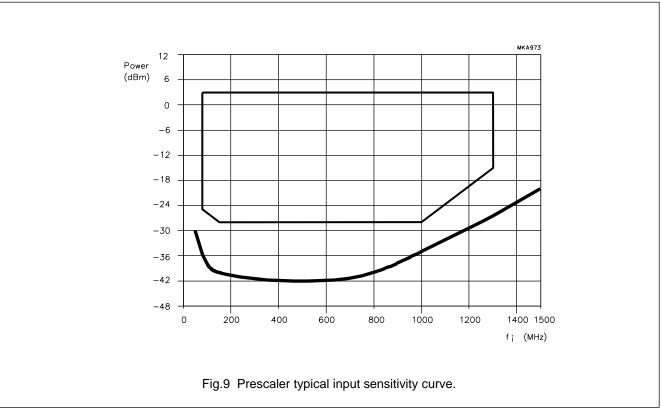
HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling bipolar devices. Every pin withstands the ESD test in accordance with *"MIL-STD-883C*" category B (2000 V). Every pin withstands the ESD test in accordance with Philips Semiconductors Machine Model 0 Ω , 200 pF (200 V).

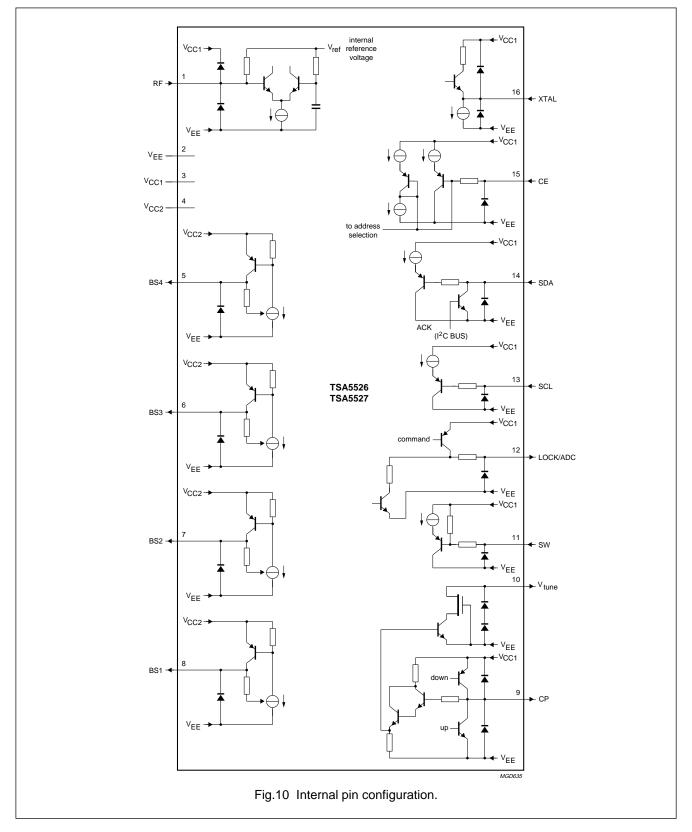

TSA5526; TSA5527


CHARACTERISTICS


 V_{CC1} = 4.5 to 5.5 V; V_{CC2} = V_{CC1} to 13.2 V; T_{amb} = –20 to +85 °C; unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies				•		
V _{CC1}	supply voltage		4.5	-	5.5	V
V _{CC2}	band switch buffers supply voltage		V _{CC1}	-	13.5	V
I _{CC1}	supply current	at power-on	_	20	25	mA
I _{CC2}	band switch buffers supply current	at power-on	_	0.5	1.0	mA
		one band switch buffer is ON; I _{source} = 40 mA	-	50	55	mA
		two band switch buffers are ON; I _{source} = 40 mA + 5 mA (any combination)	-	56	62	mA
V _{POR}	supply voltage below which POR is active		1.5	2.0	-	V
f _{RF}	RF input frequency		64	-	1300	MHz
DR	divider ratio	15-bit frequency word	256	-	32767	
		14-bit frequency word	256	-	16383	
f _{xtal}	crystal oscillator input frequency	R_{xtal} = 25 to 300 Ω	3.2	4	4.48	MHz
Z _{xtal}	crystal oscillator input impedance (absolute value)	f _i = 4 MHz	600	1 200	-	Ω
Prescaler	(see Figs 6 and 7)					
V _{i(RF)}	RF input level	f _i = 80 to 150 MHz	-25	-	3	dBm
		f _i = 150 to 1000 MHz	-28	-	3	dBm
		f _i = 1000 to 1300 MHz	-15	-	3	dBm
Z _{i(RF)}	input impedance	see Fig.8				
PNP band	I switch buffers outputs (pins 5 to 8)					
I _{LO}	output leakage current	$V_{CC2} = 13.5 V;$ $V_{o} = 0 V$	-10	-	-	μA
V _{o(sat)}	output saturation voltage	$I_{source} = 40 \text{ mA};$ $V_{o(sat)} = V_{CC2} - V_{o}$	-	0.2	0.4	V
LOCK out	put (PNP collector output) 3 wire bus mo	de (pin 12)	1	1	1	ł
I _{o(ool)}	output current when out-of-lock	$V_{CC1} = 5.5 \text{ V}; V_0 = 5.5 \text{ V}$	_	-	100	μA
V _{osat(ool)}	output saturation voltage when out-of-lock	$I_{source} = 200 \ \mu\text{A};$ $V_{o(sat)} = V_{CC1} - V_{o}$	-	0.4	0.8	V
V _{o(LOCK)}	lock output voltage		_	0.01	0.4	V
ADC inpu	t (I ² C-bus mode) pin 12		-			
V _{i(ADC)}	ADC input voltage	see Table 9	0	_	V _{CC1}	V
I _{IH(ADC)}	HIGH level input current	$V_{ADC} = V_{CC1}$	_	-	10	μA
I _{IL(ADC)}	LOW level input current	$V_{ADC} = 0 V$	-10	-	-	μΑ

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SW input ((bus format switch)		1			•
V _{IL}	LOW level input voltage		0	-	1.5	V
V _{IH}	HIGH level input voltage		3	_	V _{CC1}	V
I _{IH}	HIGH level input current	$V_{SW} = V_{CC1}$	-	-	10	μA
IIL	LOW level input current	$V_{SW} = 0 V$	-100	-	-	μA
CE input (chip enable/address selection)		1	4		•
VIL	LOW level input voltage		0	-	1.5	V
VIH	HIGH level input voltage		3	_	5.5	V
I _{IH}	HIGH level input current	V _{CE} = 5.5 V	_	-	10	μA
IIL	LOW level input current	V _{CE} = 0 V	-10	-	_	μA
SCL and S	SDA inputs					
V _{IL}	LOW level input voltage		0	-	1.5	V
VIH	HIGH level input voltage		3.0	-	5.5	V
I _{IH}	HIGH level input current	V _{BUS} = 5.5 V; V _{CC1} = 0 V	-	-	10	μA
		V _{BUS} = 5.5 V; V _{CC1} = 5.5 V	-	-	10	μA
IIL	LOW level input current	V _{BUS} = 1.5 V; V _{CC1} = 0 V	_	-	10	μA
		$V_{BUS} = 0 V; V_{CC1} = 5.5 V$	-10	-	_	μA
f _{clk}	clock frequency		-	100	400	kHz
SDA outpu	uts (I²C-bus mode)					
I _{LO}	output leakage current	V _{SDA} = 5.5 V	-	-	10	μA
Vo	output voltage	I _{sink} = 3 mA	-	-	0.4	V
Charge-pu	Imp output CP					
I _{ICPH}	HIGH charge-pump current	CP = 1	-	280	-	μA
I _{ICPL}	LOW charge-pump current	CP = 0	-	60	_	μA
V _{CP}	output voltage	in-lock; T _{amb} = 25 °C	-	1.95	-	V
I _{LI(off)}	off-state leakage current	T2 = 0; T1 = 1	-15	-0.5	+15	nA
Tuning vol	Itage output V _{tune}					
I _{LO(off)}	leakage current when switched-off	OS = 1; V _{tune} = 33 V	-	-	10	μA
Vo	output voltage when the loop is closed	$\label{eq:states} \begin{array}{l} OS = 0; \ T2 = 0; \ T1 = 0; \\ T0 = 1; \ R_L = 27 \ k\Omega; \\ V_{tune} = 33 \ V \end{array}$	0.2	-	32.7	V
3-wire bus	timing (see Figs 6 and 7)					
t _{HIGH}	clock high time		2	_	-	μs
t _{SU;DAT}	data set-up time		2	-	_	μs
t _{HD;DAT}	data hold time		2	-	-	μs
t _{SU;ENSCL}	enable to clock set-up time		10	-	_	μs
t _{HD;ENDAT}	enable to data hold time		2		-	μs
t _{EN}	enable between two transmissions		10	-	-	μs
t _{HD;ENSCL}	enable to clock active edge hold time		6	-	-	μs



TSA5526; TSA5527

INTERNAL PIN CONFIGURATION

TSA5526; TSA5527

APPLICATION INFORMATION

Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of 27 k Ω which is connected to the tuning voltage supply rail. Figs 11 and 12 show a possible loop filter. The component values depend on the oscillator characteristics and the selected reference frequency.

Crystal oscillator

The crystal oscillator uses a 4 MHz crystal connected in series with an 18 pF capacitor thereby operating in the series resonance mode. Connecting the oscillator to the supply voltage is preferred but it can, however, also be connected to ground.

Examples of I²C-bus sequences (SW = LOW)

Tables 10 to 14 show the various sequences where $f_{osc} = 100 \text{ MHz}$, BS4 = ON, $I_{CP} = 280 \mu A$, N = 512, $f_{xtal} = 4 \text{ MHz}$, S = START, A = acknowledge and P = STOP. The sequence is as follows: START + address byte + divider byte 1 + divider byte 2 + control byte + band switch byte + STOP.

For the complete sequence see Table 10 (sequence 1) or Table 11 (sequence 2).

Table 10 Complete sequence 1

40 A 08 A	CE 06	A	08	A	Р	
08 A	06					
08 A	06	•				
	00	A	40	А	Р	
6 A	4	40	А		Р	
ce						
E A	(08	А		Р	
C	E	А		Р		
1	ce A	ce	ce A 08	ce A 08 A	ce A 08 A	

Other sequences are not allowed in the write mode.

Table 15 One status byte acquisition

S C3 A XX ⁽¹⁾ X ⁽²⁾ P

Notes

- 1. XX = the read status byte.
- 2. X = no acknowledge from the master means end of sequence.

Table 16 Two status byte acquisition

S C3 A XX ⁽¹⁾	A	XX ⁽¹⁾	X ⁽²⁾	Р

Notes

- 1. XX = the read status byte.
- 2. X = no acknowledge from the master means end of sequence.

Other I²C-bus addresses may be selected by applying an appropriate voltage to the CE input.

Examples of 3-wire bus sequences (TSA5526; SW = OPEN)

Table 17 18-bit sequence ($f_{osc} = 800 \text{ MHz}$, BS4 = ON)

1	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0

The reference divider is automatically set to 512 unless RSB has been programmed to 0 during a 27-bit sequence (see Table 19).

Table 18 19-bit sequence (f_{osc} = 650 MHz, BS3 = ON)

	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0

The reference divider is automatically set to 1024 unless RSB has been programmed to 0 during a 27-bit sequence (see Table 19).

Table 19 27-bit sequence (f_{osc} = 750 MHz, BS1 = ON, N = 640, I_{cp} = 60 μ A, no test function)

0	0	0	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	0

Table 20 19-bit sequence

	0 0 1 0	1 1 1 1 1		

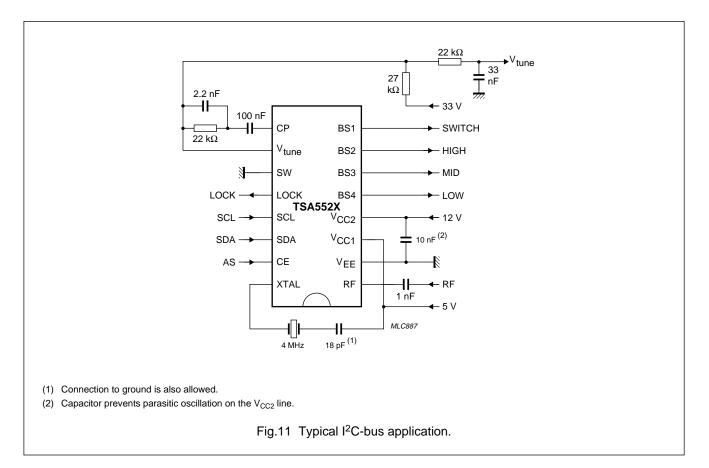
This sequence will program f_{osc} to 600 MHz in 50 kHz steps. I_{CP} remains at 60 μ A.

Table 21 18-bit sequence

This sequence will program f_{osc} to 600 MHz in 50 kHz steps. I_{CP} remains at 60 μ A.

Table 22 27-bit sequence ($f_{osc} = 650 \text{ MHz}$, BS1 = ON)

0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1


This sequence sets RSA to 0, RSB to 1 and CP to 1. After this sequence $I_{CP} = 280 \ \mu$ A, N = 1024 (19-bit transmission) and N = 512 (18-bit transmission), RSB = 1.

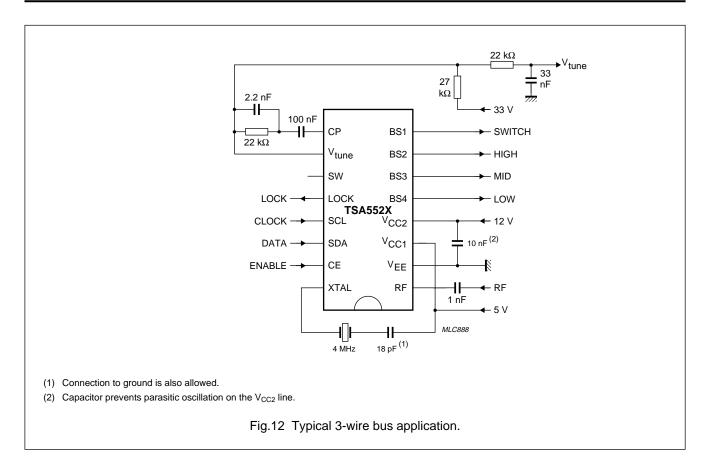
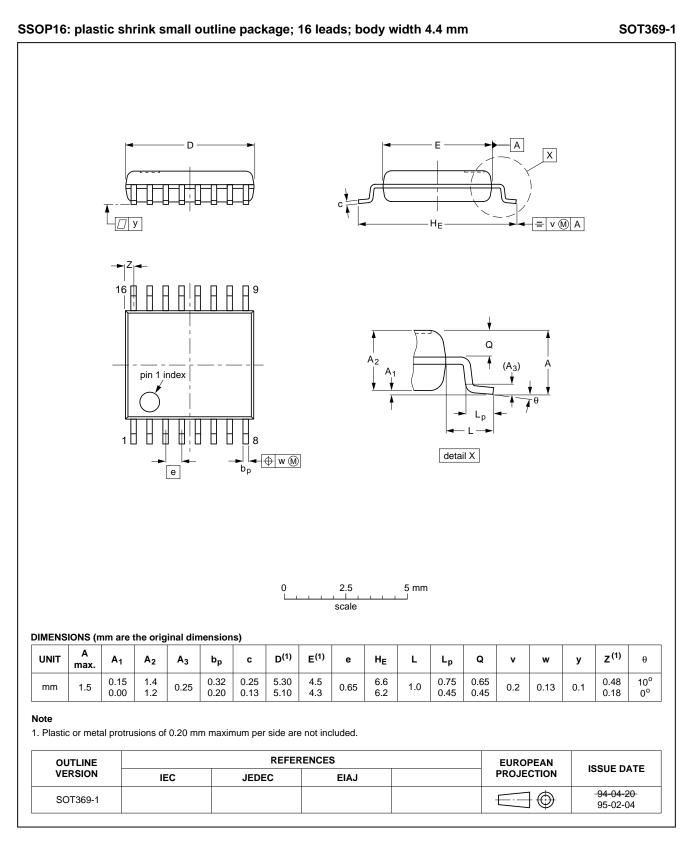

Example of 3-wire bus sequence (TSA5527; SW = OPEN)

Table 23 19-bit sequence (f_{osc} = 700 MHz, BS3 = ON)

0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1																				
	ſ	0	4	0	0	0	4	1	0	4	4	0	1	0	1	1	0	0	0	0
		0	1	0	0	0	1	1	0	1	I		1		1	1	0	0	0	U

N = 640 unless RSB has been programmed to 0 during a 27-bit sequence.


SOT109-1

1.3 GHz universal bus-controlled TV synthesizers

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOLDERING

Introduction

1.3 GHz universal bus-controlled TV synthesizers

There is no soldering method that is ideal for all IC

packages. Wave soldering is often preferred when

through-hole and surface mounted components are mixed

on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for

TSA5526; TSA5527

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

TSA5526; TSA5527

DEFINITIONS

Data sheet status						
Objective specification This data sheet contains target or goal specifications for product development.						
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.						
Product specification This data sheet contains final product specifications.						
Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.						
Application information						

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.