INTEGRATED CIRCUITS

Product specification Supersedes data of 2000 Mar 29 2000 Jul 31

UDA1342TS

for

CONTEN	ITS	9.9	DAC power control
1	FEATURES	9.10	Input oversampling rate
		9.11	DAC polarity
2	APPLICATIONS	9.12 9.13	DAC mixing position switch DAC mixer
3	GENERAL DESCRIPTION	9.13	Silence detection period
4	QUICK REFERENCE DATA	9.15	Multi purpose output
5	ORDERING INFORMATION	9.16	Mode
6	BLOCK DIAGRAM	9.17	Bass boost
5 7	PINNING	9.18	Treble
		9.19	Silence detector switch
8	FUNCTIONAL DESCRIPTION	9.20	Mute
8.1	System clock	9.21	Quick mute mode
8.2	ADC analog front-end	9.22	De-emphasis
8.2.1	Application with 2 V (RMS) input	9.23 9.24	ADC input amplifier gain DAC volume control
8.2.2	Double differential mode	9.24 9.25	DAC volume control
8.3 8.4	Decimation filter (ADC) Digital mixer (ADC)	9.26	ADC mixer gain control
8.5	Interpolation filter (DAC)	10	
8.6	Mute		
8.7	Digital mixer (DAC)	11	HANDLING
8.8	Noise shaper	12	QUALITY SPECIFICATION
8.9	Filter stream DAC	13	THERMAL CHARACTERISTICS
8.10	Digital interface	14	DC CHARACTERISTICS
8.11 8.12	Sampling speed Power-on reset	15	AC CHARACTERISTICS
8.12 8.13	Control modes	16	TIMING
8.13 8.14	Static pin mode	10	
8.14.1	System clock setting select		
8.14.2	Digital interface format select	18	PACKAGE OUTLINE
8.14.3	ADC input channel select	19	SOLDERING
8.15	L3-bus interface	19.1	Introduction to soldering surface mount
8.15.1	Introduction		packages
8.15.2	Device addressing	19.2	Reflow soldering
8.15.3 8.15.4	Register addressing Data write mode	19.3	Wave soldering
8.15.5	Data read mode	19.4 19.5	Manual soldering Suitability of surface mount IC packages f
8.16	I ² C-bus interface	10.0	wave and reflow soldering methods
8.16.1	Addressing	20	DATA SHEET STATUS
8.16.2	Slave address		
8.16.3	Register address	21	DISCLAIMERS
8.16.4	Write cycle	22	TRADEMARKS
8.16.5	Read cycle		
9	REGISTER MAPPING		
9.1	Reset		
9.2	Quick mode switch		
9.3	Bypass mixer DC filter		
9.4 0.5	DC filter		
9.5 9.6	ADC mode ADC polarity		
9.6 9.7	System clock frequency		
9.8	Data format		

UDA1342TS

1 FEATURES

General

- 2.7 to 3.6 V power supply
- 5 V tolerant digital inputs
- High pin compatibility with UDA1341TS
- 24 bits data path
- Selectable control via L3-bus interface, I²C-bus interface or static pin control; choice of 2 device addresses in L3-bus and I²C-bus mode
- Supports sample frequencies from 16 to 110 kHz
- Separate power control for ADC and DAC
- ADC and Programmable Gain Amplifiers (PGA) plus integrated high-pass filter to cancel DC offset
- Integrated digital filter plus DAC
- Digital silence detection
- No analog post filtering required for DAC
- Slave mode only applications
- Easy application.

Multiple format data interface

- I²S-bus, MSB-justified and LSB-justified format compatible
- 1fs to 4fs input and 1fs output format data rate.

DAC digital sound processing

- Separate digital logarithmic volume control for left and right channels in L3-bus mode or I²C-bus mode
- Digital tone control, bass boost and treble in L3-bus mode or I²C-bus mode
- Digital de-emphasis for sample frequencies of 32, 44.1, 48 and 96 kHz in L3-bus mode or I²C-bus mode
- Soft or quick mute in L3-bus mode or I²C-bus mode
- Output signal polarity control in L3-bus mode or I²C-bus mode
- Digital mixer for ADC output signal and digital serial input signal.

Advanced audio configuration

- 4 channel (2 × stereo) single-ended inputs with programmable gain amplifiers and 2 channel (1 × stereo) single-ended outputs configuration
- Output signal polarity control in L3-bus mode or I²C-bus mode
- High linearity, wide dynamic range, low distortion
- Double differential input configuration for enhanced ADC sound quality.

2 APPLICATIONS

• Eminently suitable for MiniDisc (MD) home and portable applications.

3 GENERAL DESCRIPTION

The UDA1342TS is a single-chip 4 channel analog-to-digital converter and 2 channel digital-to-analog converter with signal processing features employing bitstream conversion techniques. The low power consumption and low voltage requirements make the device eminently suitable for use in low-voltage low-power portable digital audio equipment which incorporates recording and playback functions.

The UDA1342TS supports the I²S-bus data format with word lengths of up to 24 bits, the MSB-justified data format with word lengths of up to 24 bits and the LSB-justified serial data format with word lengths of 16, 20 and 24 bits. The device also supports a combination of the MSB-justified output format and the LSB-justified input format.

The UDA1342TS has special sound processing features in the playback mode such as de-emphasis, volume, mute, bass boost and treble, which can be controlled by the microcontroller via the L3-bus or I^2C -bus interface.

UDA1342TS

4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies					•	
V _{DDA(ADC)}	ADC analog supply voltage		2.7	3.0	3.6	V
V _{DDA(DAC)}	DAC analog supply voltage		2.7	3.0	3.6	V
V _{DDD}	digital supply voltage		2.7	3.0	3.6	V
I _{DDA(ADC)}	ADC analog supply current	1 ADC + 1 PGA enabled	-	10.0	-	mA
		2 ADCs + 2 PGAs enabled	-	20.0	-	mA
		all ADCs + all PGAs power-down	-	200	-	μA
I _{DDA(DAC)}	DAC analog supply current	operating	-	6.0	-	mA
		DAC power-down	_	250	_	μA
I _{DDD}	digital supply current	operating	_	9.0	_	mA
		ADC power-down	-	4.5	-	mA
		DAC power-down	-	5.5	-	mA
T _{amb}	ambient temperature		-40	-	+85	°C
Analog-to-dig	ital convertor					
V _{i(rms)}	input voltage (RMS value)	at 0 dB (FS) digital output	_	0.9	-	V
(THD+N)/S ₄₈	total harmonic distortion-plus-noise	normal mode				
	to signal ratio at f _s = 48 kHz	at –1 dB	_	-90	_	dB
		at –60 dB; A-weighted	-	-40	_	dB
		double differential				
		at –1 dB	-	-93	_	dB
		at –60 dB; A-weighted	-	-41	_	dB
(THD+N)/S ₉₆	total harmonic distortion-plus-noise	normal mode				
	to signal ratio at f _s = 96 kHz	at –1 dB	-	-84	_	dB
		at –60 dB; A-weighted	-	-39	_	dB
S/N ₄₈	signal-to-noise ratio at f _s = 48 kHz	normal mode; V _i = 0 V; A-weighted	_	100	_	dB
		double differential mode; V _i = 0 V; A-weighted	-	101	-	dB
S/N ₉₆	signal-to-noise ratio at $f_s = 96$ kHz	normal mode; V _i = 0 V; A-weighted	-	99	-	dB
α_{cs}	channel separation		_	100	_	dB

UDA1342TS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Digital-to-anal	og convertor			-		
V _{o(rms)}	output voltage (RMS value)	at 0 dB (FS) digital input; note 1	-	0.9	-	V
(THD+N)/S ₄₈	total harmonic distortion-plus-noise	at 0 dB	-	-90	_	dB
to signal ratio at f _s = 48 kHz		at –60 dB; A-weighted	-	-40	_	dB
(THD+N)/S ₉₆	total harmonic distortion-plus-noise	at 0 dB	_	-83	_	dB
	to signal ratio at f _s = 96 kHz	at –60 dB; A-weighted	_	-39	_	dB
S/N ₄₈	signal-to-noise ratio at f _s = 48 kHz	code = 0; A-weighted	_	100	_	dB
S/N ₉₆	signal-to-noise ratio at f _s = 96 kHz	code = 0; A-weighted	_	99	_	dB
α_{cs}	channel separation		-	100	_	dB

Note

1. The output voltage of the DAC is proportionally to the DAC power supply voltage.

5 ORDERING INFORMATION

TYPE		PACKAGE				
NUMBER	NUMBER NAME DESCRIPTION VEI					
UDA1342TS	SSOP28	plastic shrink small outline package; 28 leads; body width 5.3 mm	SOT341-1			

UDA1342TS

6 BLOCK DIAGRAM

Product specification

Audio CODEC

UDA1342TS

7 PINNING

SYMBOL	PIN	ТҮРЕ	DESCRIPTION	
V _{SSA(ADC)}	1	analog ground pad	ADC analog ground	
VINL1	2	analog input pad	ADC input left 1	
V _{DDA(ADC)}	3	analog supply pad	ADC analog supply voltage	
VINR1	4	analog input pad	ADC input right 1	
V _{ADCN}	5	analog pad	ADC reference voltage N	
VINL2	6	analog input pad	ADC input left 2	
V _{ADCP}	7	analog pad	ADC reference voltage P	
VINR2	8	analog input pad	ADC input right 2	
IPSEL	9	5 V tolerant digital input pad	channel select input: input left 1 and right 1 or input left 2 and right 2	
V _{DDD}	10	digital supply pad	digital supply voltage	
V _{SSD}	11	digital ground pad	digital ground	
SYSCLK	12	5 V tolerant digital input pad	system clock input: $256f_s$, $384f_s$, $512f_s$ or $768f_s$	
L3MODE	13	5 V tolerant digital input pad	L3-bus mode input or mode selection input	
L3CLOCK	14	5 V tolerant digital input pad	L3-bus/I ² C-bus clock input or clock selection input	
L3DATA	15	5 V tolerant open drain input/output	L3-bus/I ² C-bus data input/output or format selection input	
BCK	16	5 V tolerant digital input pad	bit clock input	
WS	17	5 V tolerant digital input pad	word select input	
DATAO	18	5 V tolerant 2 mA slew rate controlled digital output	data output	
DATAI	19	5 V tolerant digital input pad	data input	
TEST1	20	5 V tolerant digital input pad	test control input; to be connected to ground	
STATIC	21	5 V tolerant digital input pad	mode selection input: static pin control or L3-bus/I ² C-bus control	
STATUS	22	5 V tolerant 2 mA slew rate controlled digital output	general purpose output	
QMUTE	23	5 V tolerant digital input pad	quick mute input	
VOUTR	24	analog output pad	DAC output right	
V _{DDA(DAC)}	25	analog supply pad	DAC analog supply voltage	
VOUTL	26	analog output pad	DAC output left	
V _{SSA(DAC)}	27	analog ground pad	DAC analog ground	
V _{ref}	28	analog pad	reference voltage for ADC and DAC	

UDA1342TS

Audio CODEC

8 FUNCTIONAL DESCRIPTION

8.1 System clock

The UDA1342TS operates in slave mode only, this means that in all applications the system must provide the system clock. The system clock frequency is selectable and depends on the mode of operation:

- L3-bus/I²C-bus mode: 256f_s, 384f_s, 512f_s or 768f_s
- Static pin mode: 256fs or 384fs.

The system clock must be locked in frequency to the digital interface signals.

Remarks:

- The bit clock frequency f_{BCK} can be up to $128f_{s}$, or in other words the bit clock frequency is 128 times the word select frequency f_{WS} or less: $f_{BCK} \leq 128f_{WS}$
- The WS edge MUST fall on the negative edge of the BCK signal at all times for proper operation of the digital interface
- The UDA1342TS operates with sample frequencies from 16 to 110 kHz, however for a system clock of 768fs the sampling frequency must be limited to 55 kHz.

8.2 ADC analog front-end

The analog front-end of the UDA1342TS consists of two stereo ADCs with a programmable gain stage (gain from 0 to 24 dB with 3 dB steps) which can be controlled via the L3-bus/l²C-bus interface.

8.2.1 APPLICATION WITH 2 V (RMS) INPUT

In applications in which a 2 V (RMS) input signal is used, a 15 k Ω resistor must be used in series with the input of the ADC (see Fig.3). This forms a voltage divider together with the internal ADC resistor and ensures that only 1 V (RMS) maximum is input to the IC. Using this application for a 2 V (RMS) input signal, the gain switch must be set to 0 dB. When a 1 V (RMS) input signal is input to the ADC in the same application, the gain switch must be set to 6 dB.

An overview of the maximum input voltages allowed against the presence of an external resistor and the setting of the gain switch is given in Table 1.

Table 1	Application	modes	using	input	gain :	stage
			g		3~	e.c.ge

RESISTOR (15 kΩ)	PGA GAIN	MAXIMUM INPUT VOLTAGE
Present	0 dB	2 V (RMS)
Present	6 dB	1 V (RMS)
Absent	0 dB	1 V (RMS)
Absent	6 dB	0.5 V (RMS)

Product specification

UDA1342TS

8.2.2 DOUBLE DIFFERENTIAL MODE

Since the UDA1342TS is equipped with two stereo ADCs, these two pairs of stereo ADCs can be used to convert a single stereo signal to a signal with a higher performance by using the ADCs in the double differential mode.

This mode and the input signals, being channel 1 or 2 as input to the double differential configuration, can be selected via the L3-bus/l²C-bus interface.

8.3 Decimation filter (ADC)

The decimation from $64f_s$ to $1f_s$ is performed in two stages.

The first stage realizes a $\left(\frac{\sin x}{x}\right)^4$ characteristic with a

decimation factor of 8. The second stage consists of three half-band filters, each decimating by a factor of 2. The filter characteristics are shown in Table 2.

 Table 2
 Decimation filter characteristics

ITEM	CONDITION	VALUE (dB)
Pass-band ripple	0 to 0.45f _s	±0.01
Pass-band droop	0.45f _s	-0.2
Stop band	>0.55f _s	-70
Dynamic range	0 to 0.45f _s	>135

8.4 Digital mixer (ADC)

The two stereo ADC outputs are mixed with gain coefficients from +24 to -63.5 dB to be set via the microcontroller interface.

In front of the mixer there is a DC filter. In order to prevent clipping, it is needed to filter out the DC component before mixing or amplifying the signals.

The mixing function can be enabled via the microcontroller interface.

8.5 Interpolation filter (DAC)

The digital interpolation filter interpolates from $1f_s$ to $64f_s$ by means of a cascade of FIR filters. The filter characteristics are shown in Table 3.

Table 3	Interpolation filter characteristics
---------	--------------------------------------

ITEM	CONDITION	VALUE (dB)
Pass-band ripple	0 to 0.45f _s	±0.025
Stop band	>0.55f _s	-60
Dynamic range	0 to 0.45f _s	>135

8.6 Mute

Muting the DAC will result in a cosine roll-off soft mute, using $32 \times 32 = 1024$ samples in the normal mode: this results in 24 ms at f_s = 44.1 kHz. The cosine roll-off curve is illustrated in Fig.4.

This cosine roll-off functions are implemented in the DAC data path before the digital mixer and before the master mute (see Fig.5).

In the L3-bus and I²C-bus mode, the setting of the master mute can be overruled always by pin QMUTE. This quick mute uses the same cosine roll-off, but now for only 32 samples: this is 750 μ s at f_s = 44.1 kHz.

8.7 Digital mixer (DAC)

The ADC output signal and the digital interface input signal can be mixed without an external DSP (see Fig.5).

This mixer can be controlled via the microcontroller interface.

In order to prevent clipping when mixing two 0 dB signals, the signals are attenuated digitally by -6 dB before mixing. After mixing the signal is gained by 6 dB after the master volume. This way clipping at the digital mixer is prevented. After the 6 dB gain, the signals can clip again, but this clipping can be removed by decreasing the master volume.

UDA1342TS

8.8 Noise shaper

The 5th-order noise shaper operates at 64f_s. It shifts in-band quantization noise to frequencies well above the audio band. This noise shaping technique enables high signal-to-noise ratios to be achieved. The noise shaper output is converted into an analog signal using a Filter Stream Digital-to-Analog Converter (FSDAC).

8.9 Filter stream DAC

The FSDAC is a semi-digital reconstruction filter that converts the 1-bit data stream of the noise shaper to an analog output voltage. The filter coefficients are implemented as current sources and are summed at virtual ground of the output operational amplifier. In this way very high signal-to-noise performance and low clock jitter sensitivity is achieved. A post-filter is not needed due to the inherent filter function of the DAC. On-board amplifiers convert the FSDAC output current to an output voltage signal capable of driving a line output.

The output voltage of the FSDAC is proportionally to the power supply voltage.

8.10 Digital interface

The UDA1342TS supports the following data input/output formats for the various modes (see Fig.6).

L3-bus and I²C-bus mode:

- I²S-bus format with data word length of up to 24 bits
- MSB-justified serial format with data word length of up to 24 bits
- LSB-justified serial format with data word lengths of 16, 20 or 24 bits
- MSB-justified data output and LSB-justified 16, 20 and 24 bits data input.

Static pin mode:

- I²S-bus format with data word length of up to 24 bits
- MSB-justified data output and LSB-justified 16, 20 and 24 bits data input.

 \mathbf{O}

Product specification

UDA1342TS

<u>_</u>

2000 Jul 31

UDA1342TS

8.11 Sampling speed

The UDA1342TS operates with sample frequencies from 16 to 110 kHz. This range holds for the CODEC as a whole. The DAC part can be configured in the L3-bus and l²C-bus mode to accept 2 times and even 4 times the data speed (e.g. f_s is 96 or 192 kHz), but in these modes not all of the features can be used.

Some examples of the input oversampling rate settings are shown in Table 4.

Important: in the double speed mode an input signal of 0 dB is allowed, but in the quad speed mode the input signal must be limited to -6 dB to prevent the system from clipping.

Table 4	Examples of the input oversampling rate settings	
---------	--	--

SYSTEM CLOCK	SYSTEM CLOCK FREQUENCY SETTING	SAMPLING FREQUENCY (kHz)	INPUT OVER- SAMPLING RATE	FEATURES SUPPORTED
12.288 MHz (256 × 48 kHz)	256f _s	48	single speed	all
		96	double speed	only master volume and mute
		192	quad speed	no features
22.5792 MHz (512 × 44.1 kHz)	512f _s	44.1	single speed	all
	256f _s	88.2	single speed	all
		176.4	double speed	only master volume and mute
33.8688 MHz (768 × 44.1 kHz)	768f _s	44.1	single speed	all
	384f _s	88.2	single speed	all
		176.4	double speed	only master volume and mute

8.12 Power-on reset

The UDA1342TS has an internal Power-on reset circuit (see Fig.7) which resets the test control block. All the digital sound processing features and the system controlling features are set to their default setting in the L3-bus and l^2 C-bus mode.

The reset time (see Fig.8) is determined by an external capacitor which is connected between pin V_{ref} and ground. The reset time should be at least 1 μs for V_{ref} < 1.25 V. When V_{DDA(DAC)} is switched off, the device will be reset again for V_{ref} < 0.75 V.

During the reset time the system clock should be running.

UDA1342TS

8.13 Control modes

The control mode can be set with pin STATIC and pin L3MODE:

- Static pin mode
- I²C-bus mode
- L3-bus mode.

Table 5 Mode selection

PIN STATIC	PIN L3MODE SELECTIO	
LOW	-	L3-bus mode
HIGH	LOW	I ² C-bus mode
HIGH	HIGH	static pin mode

The pin functions in the various modes are summarized in Table 6.

 Table 6
 Pin function in the selected mode

	FUNCTION						
PIN NAME	L3-BUS MODE	I ² C-BUS MODE	STATIC PIN MODE				
L3CLOCK	L3CLOCK	SCL	clock select				
L3MODE	L3MODE	LOW level	HIGH level				
L3DATA	L3DATA	SDA	format select				
QMUTE	QMUTE	QMUTE	format select				
IPSEL	A0	A0	channel select				

All features in the L3-bus and I²C-bus mode are explained in Sections 8.15 and 8.16.

UDA1342TS

8.14 Static pin mode

The controllable features in the static pin mode are:

- System clock frequency
- Data input and output format select
- ADC input channel select.

8.14.1 SYSTEM CLOCK SETTING SELECT

In the static pin mode pin L3CLOCK is used to select the system clock setting.

Table 7 System clock setting

PIN L3CLOCK	SYSTEM CLOCK SETTING
0	256f _s
1	384f _s

8.14.2 DIGITAL INTERFACE FORMAT SELECT

In the static pin mode the digital interface audio formats can be selected via pins L3DATA and QMUTE. The following interface formats can be selected (see Table 8):

- I²S-bus format with data word length of up to 24 bits
- MSB-justified output format and LSB-justified input format with data word length of 16, 20 or 24 bits.

Table 8 Data format select in static pin mode

PIN L3DATA	PIN QMUTE	INPUT/OUTPUT FORMAT
0	0	l ² S
0	1	LSB-justified 16 bits input and MSB-justified output
1	0	LSB-justified 20 bits input and MSB-justified output
1	1	LSB-justified 24 bits input and MSB-justified output

8.14.3 ADC INPUT CHANNEL SELECT

In the static pin mode pin IPSEL selects the ADC input channel.

Table 9	ADC	input	channel	select
---------	-----	-------	---------	--------

PIN IPSEL	CHANNEL SELECT
0	input channel 1 (pins VINL1 and VINR1)
1	input channel 2 (pins VINL2 and VINR2)

8.15 L3-bus interface

All digital processing features and system controlling features of the UD1342TS can be controlled by a microcontroller via the L3-bus interface.

The controllable features are:

- Reset
- System clock frequency
- Data input and output format
- Multi purpose output
- ADC features
 - Operation mode control
 - Polarity control
 - Input amplifier gain control
 - Mixer control
 - DC filtering.
- DAC features
 - Power control
 - Polarity control
 - Input data oversampling rate
 - Mixer position selection
 - Mixer control
 - Silence detector
 - De-emphasis
 - Volume
 - Flat/min./max. switch
 - Bass boost
 - Treble
 - Mute
 - Quick mute mode.

8.15.1 INTRODUCTION

The exchange of data and control information between the microcontroller and the UDA1342TS is accomplished through a serial hardware interface comprising the following pins:

- L3DATA: microcontroller interface data line
- L3MODE: microcontroller interface mode line
- L3CLOCK: microcontroller interface clock line.

The UDA1342TS acts as a slave receiver or a slave transmitter. Therefore L3CLOCK and L3MODE lines transfer only input data and the L3DATA line transfers bidirectional data.

UDA1342TS

Information transfer via the microcontroller bus is organized LSB first and in accordance with the so called 'L3' format, in which two different modes of operation can be distinguished: address mode and data transfer mode.

Important:

- When the device is powered-up, at least one L3CLOCK pulse must be sent to the L3-bus interface to wake-up the interface prior to sending information to the device. This is only needed once after the device is powered-up.
- Inside the microcontroller there is a hand-shake mechanism which handles proper data transfer from the microcontroller clock to destination clock domains. This means that when data is sent to the microcontroller interface, the system clock must be running.
- The L3-bus interface is designed in such a way that data is clocked into the device (write mode) on the positive clock edge, while the device starts the output data (read mode) on the negative clock edge. The microcontroller must read the data from the device on the positive clock edge to ensure the data is always stable.

8.15.2 DEVICE ADDRESSING

The device address mode is used to select a device for subsequent data transfer. The address mode is characterized by L3MODE being LOW and a burst of 8 pulses on L3CLOCK, accompanied by 8 bits. The fundamental timing in the address mode is shown in Fig.13.

The device address consists of one byte, which is split up in two parts (see Table 10):

- Bits 0 and 1 are called Data Operation Mode (DOM) bits and represent the type of data transfer
- Bits 2 to 7 represent a 6-bit device address.

Table 10 L3-bus interface slave address

D	ОМ	DEVICE ADDRESS					
LSB	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	MSB
R/W	1	IPSEL	0	1	0	0	0

The UDA1342TS can be set to different addresses (00 1000 or 10 1000) by setting pin IPSEL to HIGH or LOW level. In the event that the device receives a different address, it will deselect its microcontroller interface logic.

Basically, 2 types of data transfer can be defined: data transfer to the device and data transfer from the device (see Table 11).

DC	M	TRANSFER	
BIT 0	BIT 1	IRANSFER	
0	0	not used	
1	0	not used	
0	1	data write or prepare read	
1	1	data read	

8.15.3 REGISTER ADDRESSING

Table 11 Selection of data transfer

After sending the device address, including the flags (DOM bits) whether the information is read or written, the data transfer mode is entered and one byte is sent with the destination register address (see Table 12) using 7 bits, and one bit which signals whether information will be read or written.

The fundamental timing for the data transfer mode is given in Fig.14.

Table 12 L3-bus register address

	LSB	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	MSB
ſ	R/W	A6	A5	A4	A3	A2	A1	A0

Basically there are 3 cases for register addressing:

- 1. Register addressing for L3-bus write: the first bit is at logic 0 indicating a write action to the destination register, and is followed by 7 bits indicating the register address.
- 2. Prepare read addressing: the first bit of the byte is at logic 1, signalling data will be read from the register indicated.
- 3. Read action itself: in this case the device returns a register address prior to sending data from that register. When the first bit of the byte is at logic 0, the register address was valid and if the first bit is at logic 1 the register address was invalid.

Important:

- 1. Each time a new destination address needs to be written, the device address must be sent again.
- 2. When addressing the device for the first time after power-up of the device, at least one L3CLOCK cycle must be given to enable the L3-bus interface.

UDA1342TS

8.15.4 DATA WRITE MODE

The data write format is given in Table 13 and illustrated in Fig.9.

When writing data to a device four bytes must be sent:

- 1. One byte with the device address, being '01X0 1000' where 'X' stands for the IPSEL value, including '01' for signalling write to the device.
- 2. One byte starting with a logic 0 for signalling write followed by 7 bits indicating the register address.
- 3. One byte which is the Most Significant Data (MSD) byte 1.
- 4. One byte which is the Least Significant Data (LSD) byte 2.

8.15.5 DATA READ MODE

The data write format is given in Table 14 and illustrated in Fig.10.

When reading from the device, a prepare read must first be done. After the prepare read, the device address is sent again. The device then returns with the register address, indicating whether the address was valid or not, and the data of the register.

The data read mode is explained below:

- 1. One byte with the device address, being '01X0 1000' where 'X' stands for the IPSEL value, including '01' for signalling write to the device.
- 2. One byte is sent with the register address which needs to be read. This byte starts with a logic 1, which indicates that there will be a read action from the register.
- One byte with the device address including '11' is sent 3. to the device. The '11' indicates that the device must write data to the microcontroller.
- 4. The device now writes the requested register address on the L3-bus, indicating whether the requested register was valid (logic 0) or invalid (logic 1).
- 5. The device writes data from the requested register to the L3-bus with the MSD byte 1 first, followed by the LSD byte 2.

L3MODE	DATA TYPE	FIRST IN TIME						LAST IN TIME	
		BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7
Address	device address	0	1	IPSEL	0	1	0	0	0
Data transfer 1	register address	0	A6	A5	A4	A3	A2	A1	A0
Data transfer 2	MSD byte 1	D15	D14	D13	D12	D11	D10	D9	D8
Data transfer 3	LSD byte 2	D7	D6	D5	D4	D3	D2	D1	D0

L3MODE	DATA TYPE	FIRST I	LAST IN TIME						
L3MODE	DATATTPE	BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7
Prepare read									
Address	device address	0	1	IPSEL	0	1	0	0	0
Data transfer 1	register address	1	A6	A5	A4	A3	A2	A1	A0
Read data									
Address	device address	1	1	IPSEL	0	1	0	0	0
Data transfer 1	register address	0/1	A6	A5	A4	A3	A2	A1	A0
Data transfer 2	MSD byte 1	D15	D14	D13	D12	D11	D10	D9	D8
Data transfer 3	LSD byte 2	D7	D6	D5	D4	D3	D2	D1	D0

NXP Semiconductors

Product specification

UDA1342TS

8.16 I²C-bus interface

Besides the L3-bus mode the UDA1342TS supports the I²C-bus mode; all the features can be controlled by the microcontroller with the same register addresses as used in the L3-bus mode.

The exchange of data and control information between the microcontroller and the UDA1342TS in the l²C-bus mode is accomplished through a serial hardware interface comprising the following pins and signals:

- L3CLOCK: Serial Clock Line (SCL)
- L3DATA: Serial Data line (SDA).

The clock and data timing of the I²C-bus transfer is shown in Fig.15.

8.16.1 ADDRESSING

Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the START procedure (S).

8.16.2 SLAVE ADDRESS

The UDA1342TS acts as a slave receiver or a slave transmitter. Therefore, the clock signal SCL is only an input signal. The data signal SDA is an input or output signal (bidirectional line).

The UDA1342TS slave address format is shown in Table 15.

Table 15 I²C-bus slave address format

MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	LSB
0	0	1	1	0	1	IPSEL	R/W

The slave address bit IPSEL corresponds to the hardware address pin IPSEL which allows selecting the slave address.

8.16.3 REGISTER ADDRESS

The UDA1342TS register address format is given in Table 16.

Table 16 I²C-bus register address format

MS	SB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	LSB
C)	A6	A5	A4	A3	A2	A1	A0

The register mapping of the l^2 C-bus and L3-bus interfaces is the same (see Section 9).

 \mathbf{O}

8.16.4 WRITE CYCLE

2000 Jul 31

The write cycle is used to write data from the microcontroller to the internal registers. The I²C-bus format for a write cycle is shown in Table 17.

The device and register addresses are one byte each, data is always two bytes (2-bytes data).

The format of the write cycle is as follows:

- 1. The microcontroller starts with a START condition S.
- The first byte (8 bits) contains the device address 0011 01X and a write command (bit R/W = 0). 2.
- This is followed by an acknowledge (A) from the UDA1342TS. 3.
- The microcontroller then writes the register address (8 bits) where writing of the register content of the UDA1342TS must start. 4.
- The UDA1342TS acknowledges this register address. 5.
- The microcontroller sends 2-bytes data with the Most Significant Data (MSD) byte first and then the Least Significant Data (LSD) byte, where each 6. byte is acknowledged by the UDA1342TS.
- 7. After the last acknowledge the UDA1342TS frees the I²C-bus and the microcontroller can generate a STOP condition (P).

Table 17 Master transmitter writes to UDA1342TS registers

				ACKNOWLEDGE FROM UDA1342TS														
	DEVICE ADDRESS	R/W		REGISTER ADDRESS						I	DAT	A (1)						
S	0011 01X	0	А	0XXX XXXX	А	MSD1	А	LSD1	А	MSD2	А	LSD2	А	MSDn	А	LSDn	Α	Р
	8 bits			8 bits		8 bits		8 bits		8 bits		8 bits		8 bits		8 bits		

Note

19

1. Auto increment of the register address is carried out if repeated groups of 2 bytes are transmitted.

Product specification

 \mathbf{O}

8.16.5 READ CYCLE

The read cycle is used to read data from the internal registers of the UDA1342TS to the microcontroller. The I²C-bus format for a read cycle is shown in Table 18.

2000 Jul 31

20

The format of the read cycle is as follows:

- 1. The microcontroller starts with a START condition S.
- 2. The first byte (8 bits) contains the device address 0011 01X and a write command (bit R/W = 0).
- 3. This is followed by an acknowledge (A) from the UDA1342TS.
- 4. The microcontroller then writes the register address where reading of the register content of the UDA1342TS must start.
- 5. The UDA1342TS acknowledges this register address.
- 6. Then the microcontroller generates a repeated START (Sr).
- 7. Again the device address 0011 01X is given, but this time followed by a read command (bit R/W = 1).
- 8. The UDA1342TS sends the two-byte data with the Most Significant Data (MSD) byte first and then the Least Significant Data (LSD) byte, where each byte is acknowledged by the microcontroller (master).
- 9. The microcontroller stops this cycle by generating a negative acknowledge (NA).
- 10. The UDA1342TS then frees the I²C-bus and the microcontroller can generate a STOP condition (P).

Table 18 Master transmitter reads from UDA1342TS registers

	ACKNOWLEDGE FROM UDA1342TS								ACKNOWLEDGE FROM MASTER													
	DEVICE ADDRESS	R/W		REGISTER ADDRESS			DEVICE ADDRESS	R/W							DA	TA ⁽¹⁾						
S	0011 01X	0	А	0XXX XXXX	А	Sr	0011 01X	1	А	MSD1	А	LSD1	А	MSD2	А	LSD2	А	MSDn	А	LSDn	NA	Ρ
	8 bits			8 bits			8 bits			8 bits		8 bits		8 bits		8 bits		8 bits		8 bits		

Note

1. Auto increment of the register address is carried out if repeated groups of 2 bytes are transmitted.

UDA1342TS

9 REGISTER MAPPING

The addresses of the control registers with default values at Power-on reset are shown in Table 19. Functions of the registers are shown in Tables 20 to 45.

2000 Jul 31

Table 19 Register map

ADDRESS	FUNCTION	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00H	system	RST	QS	MDC	DC	AM2	AM1	AM0	PAD	0	SC1	SC0	IF2	IF1	IF0	DP	PDA
		-	0	0	1	1	0	1	0	0	0	0	0	0	0	1	0
01H	sub system	-	_	_	_	_	_	_	_	OS1	OS0	MPS	MIX	SD1	SD0	MP1	MP0
		-	_	_	_	_	_	_	_	0	0	0	0	0	0	0	0
02H to 0FH	reserved	-	-	-	-	-	-	-	-	_	_	-	-	_	_	_	-
10H	DAC features	M1	M0	BB3	BB2	BB1	BB0	TR1	TR0	SDS	MTB	MTA	MT	QM	DE2	DE1	DE0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11H	DAC master volume	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	VR7	VR6	VR5	VR4	VR3	VR2	VR1	VR0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12H	DAC mixer volume	VB7	VB6	VB5	VB4	VB3	VB2	VB1	VB0	VA7	VA6	VA5	VA4	VA3	VA2	VA1	VA0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13H to 1FH	reserved	-	_	-	-	_	_	_	_	-	_	_	_	-	-	_	_
20H	ADC input and mixer	0	0	0	0	IA3	IA2	IA1	IA0	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
	gain channel 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21H	ADC input and mixer	0	0	0	0	IB3	IB2	IB1	IB0	MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0
	gain channel 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22H to 2FH	reserved	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
30H	evaluation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31H to FFH	reserved	-	_	_	_	-	_	_	-	_	_	-	_	_	_	_	-

Audio CODEC

UDA1342TS

21

Product specification

UDA1342TS

9.1 Reset

A 1-bit value to initialize the L3-bus and I²C-bus registers except the system register (00H) with default settings by setting bit RST = 1.

Table 20 Reset bit

RST	FUNCTION
0	no reset
1	reset registers to default

9.2 Quick mode switch

A 1-bit value to enable the quick mode change of the ADC. The soft mode change works only between modes if bit AM2 = 1.

Table 21 Quick mode switch

QS	FUNCTION
0	soft mode change
1	quick mode change

9.3 Bypass mixer DC filter

A 1-bit value to disable the DC filter of the ADC mixer. This DC filter is in front of the mixer to prevent clipping inside the mixer due to DC signals.

Table 22 Mixer DC filtering

MDC	FUNCTION
0	enable mixer DC filtering
1	disable mixer DC filtering

9.4 DC filter

A 1-bit value to enable the DC filter of the ADC output. This DC filter is inside the decimation filter.

Table 23 DC-filtering

DC	FUNCTION
0	disable output DC filtering
1	enable output DC filtering

9.5 ADC mode

A 3-bit value to select the mode of the ADC.

Table 24 ADC mode

AM2	AM1	AM0	FUNCTION
0	0	0	ADC power-off
0	0	1	input 1 select (input 2 off)
0	1	0	input 2 select (input 1 off)
0	1	1	not used
1	0	0	channel swap and signal inversion
1	0	1	input 1 select (double differential mode)
1	1	0	input 2 select (double differential mode)
1	1	1	mixing mode

9.6 ADC polarity

A 1-bit value to control the ADC polarity.

Table 25 Polarity control of the ADC

PAD	FUNCTION
0	non-inverting
1	inverting

9.7 System clock frequency

A 2-bit value to select the external clock frequency.

 Table 26
 System clock frequency settings

SC1	SC0	FUNCTION
0	0	256f _s
0	1	384fs
1	0	512f _s
1	1	768f _s

UDA1342TS

9.8 Data format

A 3-bit value to select the data format.

Table 27 Data format selection

IF2	IF1	IF0	FUNCTION		
0	0	0	I ² S-bus		
0	0	1	LSB-justified16 bits		
0	1	0	LSB-justified 20 bits		
0	1	1	LSB-justified 24 bits		
1	0	0	MSB-justified		
1	0	1	LSB-justified 16 bits input and MSB-justified output		
1	1	0	LSB-justified 20 bits input and MSB-justified output		
1	1	1	LSB-justified 24 bits input and MSB-justified output		

9.9 DAC power control

A 1-bit value to disable the DAC to reduce power consumption. The DAC power-off is not recommended when the DAC outputs are DC loaded.

Table 28DAC power control

DP	FUNCTION	
0	DAC power-off	
1	DAC power-on	

9.10 Input oversampling rate

A 2-bit value to select the oversampling rate of the input signal (see Table 32). In the quad speed input rate, care must be taken that the input signal is smaller than -5.67 dB (FS).

Table 31 DAC mixer

MIX	FUNCTION	
0	disable mixer	
1	enable mixer	

9.11 DAC polarity

A 1-bit value to control the DAC polarity.

Table 29 Polarity control of DAC

PDA	FUNCTION	
0	non-inverting	
1	inverting	

9.12 DAC mixing position switch

A 1-bit value to select the mixing position of the ADC signal in the DAC.

Table 30 DAC mixing position switch

MPS	FUNCTION	
0	before sound features	
1	after sound features	

9.13 DAC mixer

A 1-bit value to enable the digital mixer of the DAC.

UDA1342TS

 Table 32
 Input oversampling rate

OS1	OS0	MODE	SAMPLING FREQUENCY	ADC	DAC FEATURES
0	0	single speed	16 to 110 kHz	supported	all digital filters and all features, including mixing are available
0	1	double speed	32 to 220 kHz	not supported	first digital filter is bypassed, only master volume and master mute features are available
1	0	quad speed	64 to 440 kHz	not supported	no mixing nor any sound feature is supported
1	1	reserved	-	_	-

9.14 Silence detection period

A 2-bit value to define the silence period for the silence detector.

Table 33 Silence detection period

SD1	SD0	FUNCTION			
0	0	3200 samples			
0	1	4800 samples			
1	0	9600 samples			
1	1	19200 samples			

9.15 Multi purpose output

A 2-bit value to select the output signal on pin STATUS.

Table 34 Multi purpose output selection

MP1	MP0	FUNCTION			
0	0	no output			
0	1	overflow (ADC) detection			
1	0	reserved			
1	1	digital silence detection			

9.16 Mode

A 2-bit value to program the mode of the sound processing filters of bass boost and treble.

 Table 35
 Flat/min./max. switch position

M1	MO	FUNCTION
0	0	flat
0	1	min.
1	0	min.
1	1	max.

9.17 Bass boost

A 4-bit value to program the bass boost settings. The used set depends on the setting of bits M1 and M0. At $f_s = 44.1$ kHz the -3 dB point for minimum setting is 250 Hz and the -3 dB point for maximum setting is 300 Hz. The default value is 0000.

UDA1342TS

DD2	BB2	BB1	BB0	BASS BOOST (dB)		
BB3				FLAT	MIN.	MAX.
0	0	0	0	0	0	0
0	0	0	1	0	2	2
0	0	1	0	0	4	4
0	0	1	1	0	6	6
0	1	0	0	0	8	8
0	1	0	1	0	10	10
0	1	1	0	0	12	12
0	1	1	1	0	14	14
1	0	0	0	0	16	16
1	0	0	1	0	18	18
1	0	1	0	0	18	20
1	0	1	1	0	18	22
1	1	0	0	0	18	24
1	1	0	1	0	18	24
1	1	1	0	0	18	24
1	1	1	1	0	18	24

Table 36 Bass boost settings

9.18 Treble

A 2-bit value to program the treble setting. The used set depends on the setting of bits M1 and M0. At $f_s = 44.1$ kHz the -3 dB point for minimum setting is 3.0 kHz and the -3 dB point for maximum setting is 1.5 kHz. The default value is 00.

Table 37 Treble settings

TR1	TR0	TREBLE (dB)			
	INU	FLAT	MIN.	MAX.	
0	0	0	0	0	
0	1	0	2	2	
1	0	0	4	4	
1	1	0	6	6	

9.19 Silence detector switch

A 1-bit value to enable the silence detector.

Table 38 Silence detector switch

SDS	FUNCTION
0	disable silence detector
1	enable silence detector

9.20 Mute

Three 1-bit values to enable the digital mute. Bit MT is the master mute, using bit MTA the signal from the digital interface can be soft muted when the DAC mixer is enabled and using bit MTB the signal from ADC can be soft muted.

Table 39 Mute

MT MTA MTB	FUNCTION				
0	no muting				
1	muting				

9.21 Quick mute mode

A 1-bit value to enable the quick mute function of the master mute.

Table 40 Quick mute mode settings

QM	FUNCTION			
0	soft mute mode			
1	quick mute mode			

9.22 De-emphasis

A 3-bit value to enable the digital de-emphasis filter.

UDA1342TS

Table 41 De-emphasis settings

DE2	DE1	DE0	FUNCTION
0	0	0	no de-emphasis
0	0	1	de-emphasis at f _s = 32 kHz
0	1	0	de-emphasis at f _s = 44.1 kHz
0	1	1	de-emphasis at f _s = 48 kHz
1	0	0	de-emphasis at f _s = 96 kHz

9.23 ADC input amplifier gain

Two 4-bit values to program the gain of the input amplifiers. Bits IA applies for input amplifier A and bits IB to input amplifier B.

Table 42 ADC input amplifier gain settings

IA3 IB3	IA2 IB2	IA1 IB1	IA0 IB0	AMPLIFIER GAIN (dB)
0	0	0	0	0
0	0	0	1	3
0	0	1	0	6
0	0	1	1	9
0	1	0	0	12
0	1	0	1	15
0	1	1	0	18
0	1	1	1	21
1	0	0	0	24

9.24 DAC volume control

Four 8-bit values to program the volume attenuations. The range is from 0 to -66 dB and $-\infty \text{ dB}$ in steps of 0.25 dB. Bits VL and VR are master volumes for the left and right channels.

VL7 VR7	VL6 VR6	VL5 VR5	VL4 VR4	VL3 VR3	VL2 VR2	VL1 VR1	VL0 VR0	VOLUME (dB)
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	-0.25
0	0	0	0	0	0	1	0	-0.50
0	0	0	0	0	0	1	1	-0.75
0	0	0	0	0	1	0	0	-1.00
:	:	:	:	:	:	:	:	:
1	1	0	0	0	1	0	0	-49.0
1	1	0	0	0	1	0	1	-49.25
1	1	0	0	0	1	1	0	-49.5
1	1	0	0	0	1	1	1	-49.75
1	1	0	0	1	0	0	0	-50.0
1	1	0	0	1	1	0	0	-52.0
1	1	0	1	0	0	0	0	-54.0
1	1	0	1	0	1	0	0	-57.0
1	1	0	1	1	0	0	0	-60.0
1	1	0	1	1	1	0	0	-66.0
1	1	1	0	0	0	0	0	-∞-
:	:	:		:	:	:	:	:
1	1	1	1	1	1	1	1	-∞

 Table 43
 DAC volume settings

9.25 DAC mixer volume control

Four 8-bit values to program the volume attenuations. The range is from 0 to -60 dB and $-\infty \text{ dB}$ in steps of 0.25 dB. When the DAC mixer is enabled, the signal from the digital interface can be controlled by bits VA and the signal from the ADC can be controlled by bits VB.

UDA1342TS

 Table 44
 DAC volume settings

VA7 VB7	VA6 VB6	VA5 VB5	VA4 VB4	VA3 VB3	VA2 VB2	VA1 VB1	VA0 VB0	VOLUME (dB)
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	-0.25
0	0	0	0	0	0	1	0	-0.50
0	0	0	0	0	0	1	1	-0.75
0	0	0	0	0	1	0	0	-1.00
:	:	:	:	:	:	:	:	:
1	0	1	0	1	1	0	0	-43.0
1	0	1	0	1	1	0	1	-43.25
1	0	1	0	1	1	1	0	-43.5
1	0	1	0	1	1	1	1	-43.75
1	0	1	1	0	0	0	0	-44.0
1	0	1	1	0	1	0	0	-46.0
1	0	1	1	1	0	0	0	-48.0
1	0	1	1	1	1	0	0	-51.0
1	1	0	0	0	0	0	0	-54.0
1	1	0	0	0	1	0	0	-60.0
1	1	0	0	1	0	0	0	-∞-
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	-∞

9.26 ADC mixer gain control

Two 8-bit values to program the channel 1 and 2 mixing, when the mixer mode is selected. Bits MA applies to channel 1 and bits MB to channel 2. The range is from +24 to -63.5 dB and $-\infty$ dB in steps of 0.5 dB.

Table 45 ADC mixer gain settings

MA7 MB7	MA6 MB6	MA5 MB5	MA4 MB4	MA3 MB3	MA2 MB2	MA1 MB1	MA0 MB0	MIXER GAIN (dB)
0	0	1	1	0	0	0	0	+24.0
0	0	1	0	1	1	1	1	+23.5
0	0	1	0	1	1	1	0	+23.0
:	:	:	:	:	:	:	:	:
0	0	0	0	0	0	1	0	+1.0
0	0	0	0	0	0	0	1	+0.5
0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	-0.5
:	:	:	:	:	:	:	:	:
1	0	0	0	0	1	0	0	-62.0
1	0	0	0	0	0	1	1	-62.5

UDA1342TS

Audio CODEC

MA7 MB7	MA6 MB6	MA5 MB5	MA4 MB4	MA3 MB3	MA2 MB2	MA1 MB1	MA0 MB0	MIXER GAIN (dB)
1	0	0	0	0	0	1	0	-63.0
1	0	0	0	0	0	0	1	-63.5
1	0	0	0	0	0	0	0	-∞

UDA1342TS

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage	note 1	-	4	V
T _{xtal(max)}	maximum crystal temperature		-	150	°C
T _{stg}	storage temperature		-65	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
V _{es}	electrostatic handling voltage	note 2	-1100	+1100	V
		note 3	-250	+250	V
I _{lu(prot)}	latch-up protection current	T _{amb} = 125 °C; V _{DD} = 3.6 V	-	200	mA
I _{sc(DAC)}	short-circuit current of DAC	$T_{amb} = 0 \ ^{\circ}C; V_{DD} = 3 \ V; \text{ note } 4$			
		output short-circuited to $V_{SSA(DAC)}$	-	450	mA
		output short-circuited to $V_{\text{DDA}(\text{DAC})}$	-	325	mA

Notes

- 1. All supply connections must be made to the same power supply.
- 2. Equivalent to discharging a 100 pF capacitor via a 1.5 k Ω series resistor.
- 3. Equivalent to discharging a 200 pF capacitor via a 0.75 μ H series inductor.
- 4. DAC operation after short-circuiting cannot be warranted.

11 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

12 QUALITY SPECIFICATION

In accordance with "SNW-FQ-611-E".

13 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	90	K/W

14 DC CHARACTERISTICS

 $V_{DDD} = V_{DDA(ADC)} = V_{DDA(DAC)} = 3.0 \text{ V}; T_{amb} = 25 \text{ °C}; R_L = 5 \text{ k}\Omega;$ all voltages measured with respect to ground; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Supplies; note 1									
V _{DDA(ADC)}	ADC analog supply voltage		2.7	3.0	3.6	V			
V _{DDA(DAC)}	DAC analog supply voltage		2.7	3.0	3.6	V			
V _{DDD}	digital supply voltage		2.7	3.0	3.6	V			

UDA1342TS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DDA(ADC)	ADC analog supply current	1 ADC + 1 PGA enabled	-	10	_	mA
		2 ADCs + 2 PGAs enabled	_	20	_	mA
		all ADCs + all PGAs power-down	-	200	_	μA
DDA(DAC)	DAC analog supply current	operating	_	6.0	_	mA
		DAC power-down	_	250	_	μA
DDD	digital supply current	operating	-	9.0	-	mA
		ADC power-down	_	4.5	_	mA
		DAC power-down	_	5.5	_	mA
Digital inp	out pins (5 V tolerant TTL cor	npatible)				
V _{IH}	HIGH-level input voltage		2.0	_	5.5	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
I _{LI}	input leakage current		_	_	1	μA
Ci	input capacitance		_	-	10	pF
Digital out	put pins					
V _{OH}	HIGH-level output voltage	I _{OH} = -2 mA	$0.85V_{DDD}$	-	_	V
V _{OL}	LOW-level output voltage	I _{OL} = 2 mA	_	_	0.4	V
Reference	voltage					
V _{ref}	reference voltage	with respect to $V_{SSA(ADC)}$; note 2	0.45V _{DDA}	0.5V _{DDA}	$0.55 V_{DDA}$	V
R _{o(Vref)}	output resistance on pin V _{ref}		_	5	_	kΩ
Analog-to	-digital converter					
V _{ADCP}	positive reference voltage of the ADC		-	V _{DDA(ADC)}	-	V
V _{ADCN}	negative reference voltage of the ADC		-	0.0	_	V
R _i	input resistance		_	10	_	kΩ
C _i	input capacitance		-	24	_	pF
Digital-to-	analog converter		•		•	•
o(max)	maximum output current	(THD + N)/S < 0.1%	-	1.6	_	mA
R_	load resistance		3	-	_	kΩ
CL	load capacitance	note 3	_	_	50	pF

Notes

1. All supply connections must be made to the same power supply unit.

2. $V_{DDA} = V_{DDA(DAC)} = V_{DDA(ADC)}$.

3. When higher capacitive loads must be driven, a 100 Ω resistor must be connected in series with the DAC output in order to prevent oscillations in the output operational amplifier.

UDA1342TS

15 AC CHARACTERISTICS

 $V_{DDD} = V_{DDA(ADC)} = V_{DDA(DAC)} = 3.0 \text{ V}; f_i = 1 \text{ kHz at} -1 \text{ dB}; T_{amb} = 25 \text{ °C}; R_L = 5 \text{ k}\Omega;$ all voltages measured with respect to ground; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Analog-to-digit	tal converter					
V _{i(rms)}	input voltage	0 dB setting	-	900	_	mV
	(RMS value)	3 dB setting	_	640	_	mV
		6 dB setting	-	450	-	mV
		9 dB setting	_	320	_	mV
		12 dB setting	_	225	_	mV
		15 dB setting	-	160	_	mV
		18 dB setting	-	122.5	-	mV
		21 dB setting	-	80	-	mV
		24 dB setting	-	61.25	-	mV
ΔV_i	unbalance between channels		-	<0.1	-	dB
(THD + N)/S ₄₈	total harmonic	normal mode; at –1 dB				
	distortion-plus-noise to	0 dB setting	_	-90	_	dB
	signal ratio at f _s = 48 kHz	3 dB setting	_	-90	_	dB
		6 dB setting	_	-90	_	dB
		9 dB setting	_	-90	_	dB
		12 dB setting	_	-89	-	dB
		15 dB setting	_	-89	_	dB
		18 dB setting	_	-88	-	dB
		21 dB setting	_	-87	-	dB
		24 dB setting	_	-85	-	dB
		normal mode; at -60 dB; A-weighted				
		0 dB setting	-	-40	-	dB
		3 dB setting	_	-37	-	dB
		6 dB setting	-	-36	-	dB
		9 dB setting	-	-35	-	dB
		12 dB setting	_	-33	-	dB
		15 dB setting	_	-31	-	dB
		18 dB setting	-	-30	-	dB
		21 dB setting	_	-28	-	dB
		24 dB setting	-	-26	-	dB
		double differential mode				
		at 0 dB gain	-	-93	-	dB
		at 0 dB gain; –60 dB input; A-weighted	_	-41	-	dB

UDA1342TS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
(THD + N)/S ₉₆	total harmonic	normal mode				
	distortion-plus-noise to	at 0 dB gain	_	-84	_	dB
	signal ratio at $f_s = 96 \text{ kHz}$	at –60 dB; A-weighted	-	-39	_	dB
S/N ₄₈	signal-to-noise ratio at	V _i = 0 V; A-weighted				
	f _s = 48 kHz	normal mode	-	100	-	dB
		double differential mode	-	101	_	dB
S/N ₉₆	signal-to-noise ratio at f _s = 96 kHz	V _i = 0 V; A-weighted; normal mode	-	99	-	dB
α_{cs}	channel separation		-	100	_	dB
PSRR	power supply rejection ratio	f _{ripple} = 1 kHz; V _{ripple} = 30 mV (p-p)	-	30	-	dB
Digital-to-anal	og converter					
V _{o(rms)}	output voltage (RMS value)	at 0 dB (FS) digital input	_	0.9	-	V
ΔV_0	unbalance between channels		-	<0.1	-	dB
(THD+N)/S ₄₈	total harmonic	at 0 dB	_	-90	-	dB
	distortion-plus-noise to signal ratio at $f_s = 48 \text{ kHz}$	at –60 dB; A-weighted	-	-40	-	dB
(THD+N)/S ₉₆	total harmonic	at 0 dB	-	-83	_	dB
	distortion-plus-noise to signal ratio at f _s = 96 kHz	at –60 dB; A-weighted	-	-39	-	dB
S/N ₄₈	signal-to-noise ratio at f _s = 48 kHz	code = 0; A-weighted	-	100	-	dB
S/N ₉₆	signal-to-noise at f _s = 96 kHz	code = 0; A-weighted	-	99	_	dB
α_{cs}	channel separation		-	100	_	dB
PSRR	power supply rejection ratio	$f_{ripple} = 1 \text{ kHz}; V_{ripple} = 30 \text{ mV} (p-p)$	-	60	-	dB

UDA1342TS

16 TIMING

 $V_{DDD} = V_{DDA(ADC)} = V_{DDA(DAC)} = 2.7$ to 3.6 V; $T_{amb} = -20$ to +85 °C; all voltages referenced to ground; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
System clock	timing; note 1 (see Fig.11)		·			·
T _{sys}	system clock cycle time	$f_{sys} = 256 f_s$	35	81	250	ns
		$f_{sys} = 384 f_s$	23	54	170	ns
		$f_{sys} = 512 f_s$	17	41	130	ns
		$f_{sys} = 768 f_s$	17	27	90	ns
t _{CWL}	system clock LOW time	f _{sys} < 19.2 MHz	0.3T _{sys}	_	0.7T _{sys}	ns
		$f_{sys} \ge 19.2 \text{ MHz}$	0.4T _{sys}	_	0.6T _{sys}	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{CWH}	system clock HIGH time	f _{sys} < 19.2 MHz	0.3T _{sys}	-	0.7T _{sys}	ns
		$f_{sys} \ge 19.2 \text{ MHz}$	0.4T _{sys}	-	0.6T _{sys}	ns
Serial interfa	ce input/output data timing (see F					
f _{BCK}	bit clock frequency		-	-	128f _s	Hz
T _{cy(BCK)}	bit clock cycle time	T _{cy(s)} = sample frequency cycle time	-	-	¹ / ₁₂₈ T _{cy(s)}	S
t _{BCKH}	bit clock HIGH time		30	-	_	ns
t _{BCKL}	bit clock LOW time		30	-	-	ns
t _r	rise time		-	-	20	ns
t _f	fall time		-	-	20	ns
t _{su(WS)}	word select set-up time		10	-	_	ns
t _{h(WS)}	word select hold time		10	-	_	ns
t _{su(DATAI)}	data input set-up time		10	-	_	ns
t _{h(DATAI)}	data input hold time		10	-	_	ns
t _{h(DATAO)}	data output hold time		0	-	-	ns
t _{d(DATAO-BCK)}	data output to bit clock delay		-	-	30	ns
t _{d(DATAO-WS)}	data output to word select delay		-	-	30	ns
L3-bus interf	ace timing (see Figs 13 and 14)					
t _r	rise time	note 2	_	-	10	ns/V
t _f	fall time	note 2	-	-	10	ns/V
T _{cy(CLK)L3}	L3CLOCK cycle time	note 3	500	-	_	ns
t _{CLK(L3)H}	L3CLOCK HIGH time	_	250	-	_	ns
t _{CLK(L3)L}	L3CLOCK LOW time	1	250	_	-	ns
t _{su(L3)A}	L3MODE set-up time in address mode		190	-	-	ns
t _{h(L3)A}	L3MODE hold time in address mode		190	-	-	ns

UDA1342TS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{su(L3)D}	L3MODE set-up time in data transfer mode		190	-	-	ns
t _{h(L3)D}	L3MODE hold time in data transfer mode		190	-	-	ns
t _{stp(L3)}	L3MODE stop time in data transfer mode		190	-	-	ns
t _{su(L3)DA}	L3DATA set-up time in address and data transfer mode		190	-	-	ns
t _{h(L3)DA}	L3DATA hold time in address and data transfer mode		30	-	-	ns
t _{su(L3)R}	L3DATA set-up time for read data		50	-	-	ns
t _{h(L3)R}	L3DATA hold time for read data		360	-	_	ns
t _{en(L3)R}	L3DATA enable time for read data		380	_	_	ns
t _{dis(L3)R}	L3DATA disable time for read data		50	-	-	ns
I ² C-bus inter	face timing (see Fig.15)					
f _{SCL}	SCL clock frequency		0	_	400	kHz
t _{LOW}	SCL LOW time		1.3	_	_	μs
t _{HIGH}	SCL HIGH time		0.6	-	_	μs
t _r	rise time SDA and SCL	note 4	20 + 0.1C _b	-	300	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _f	fall time SDA and SCL	note 4	20 + 0.1C _b	_	300	ns
t _{HD;STA}	hold time START condition	note 5	0.6	-	-	μS
t _{SU;STA}	set-up time repeated START		0.6	_	-	μs
t _{SU;STO}	set-up time STOP condition		0.6	-	-	μS
t _{BUF}	bus free time between a STOP and START condition		1.3	_	-	μs
t _{SU;DAT}	data set-up time		100	_	-	ns
t _{HD;DAT}	data hold time		0	_	-	μS
t _{SP}	pulse width of spikes	note 6	0	_	50	ns
Cb	capacitive load for each bus line		-	_	400	pF

Notes

- 1. The typical value of the timing is specified at 48 kHz sampling frequency.
- 2. In order to prevent digital noise interfering with the L3-bus communication, it is best to have the rise and fall times as small as possible.
- 3. When the sampling frequency is below 32 kHz, the L3CLOCK cycle must be limited to $\frac{1}{64fs}$ cycle.
- 4. C_b is the total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF.
- 5. After this period, the first clock pulse is generated.
- 6. To be suppressed by the input filter.

UDA1342TS

2000 Jul 31

36

UDA1342TS

NXP Semiconductors

Product specification

UDA1342TS

38

UDA1342TS

17 APPLICATION INFORMATION

UDA1342TS

18 PACKAGE OUTLINE

UDA1342TS

19 SOLDERING

19.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

19.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

19.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

19.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}\text{C}.$

UDA1342TS

19.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD		
PACRAGE	WAVE	REFLOW ⁽¹⁾	
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable	
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ⁽²⁾	suitable	
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the *"Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods"*.
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

UDA1342TS

20 DATA SHEET STATUS

DOCUMENT STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITION
Objective data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product data sheet	Production	This document contains the product specification.

Notes

- 1. Please consult the most recently issued document before initiating or completing a design.
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

21 DISCLAIMERS

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

UDA1342TS

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

22 TRADEMARKS

I²C-bus — logo is a trademark of NXP B.V.

NXP Semiconductors

provides High Performance Mixed Signal and Standard Product solutions that leverage its leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com For sales offices addresses send e-mail to: salesaddresses@nxp.com

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753503/25/02/pp45

Date of release: 2000 Jul 31

Document order number: 9397 750 07241