

ULQ2004A-Q1 SGLS148D – DECEMBER 2002–REVISED APRIL 2010

ULQ2003A-Q1

HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

Check for Samples: ULQ2003A-Q1, ULQ2004A-Q1

FEATURES

Qualified for Automotive Applications	D OR PW PACKAGE (TOP VIEW)
 ESD Protection Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) 	
 500-mA-Rated Collector Current (Single Output) 	2B 2 15 2C 3B 3 14 3C 4B 4 13 4C
High-Voltage Outputs: 50 V	5B[[5 12]]5C
Output Clamp Diodes	6B [] 6 11 [] 6C
 Inputs Compatible With Various Types of 	7B [] 7 10]] 7C
Logic	Е[]8 9]СОМ
Balas Driver Anglications	

Relay-Driver Applications

DESCRIPTION

The ULQ2003A and ULQ2004A are high-voltage high-current Darlington transistor arrays. Each consists of seven npn Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The ULQ2003A has a 2.7-k Ω series base resistor for each Darlington pair, for operation directly with TTL or 5-V CMOS devices. The ULQ2004A has a 10.5-k Ω series base resistor to allow operation directly from CMOS devices that use supply voltages of 6 V to 15 V. The required input current of the ULQ2004A is below that of the ULQ2003A.

T _A	PACH	(AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		Tube of 40	ULQ2003ATDQ1		
		Reel of 2500	ULQ2003ATDRQ1	ULQ2003AT	
–40°C to 105°C	SOIC – D	Tube of 40	ULQ2004ATDQ1	Product Preview	
		Reel of 2500	ULQ2004ATDRQ1	ULQ2004AT	
	TSSOP – PW	Reel of 2000	ULQ2003ATPWRQ1	U2003AT	
–40°C to 125°C	SOIC – D	Reel of 2500	ULQ2003AQDRQ1	ULQ2003AQ	

ORDERING INFORMATION⁽¹⁾

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCHEMATICS (EACH DARLINGTON PAIR)

- A. All resistor values shown are nominal.
- B. The collector-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schottky diode should be added to clamp negative undershoots.

2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

at 25°C free-air temperature (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Collector-emitter voltage			50	V
	Clamp diode reverse voltage ⁽²⁾			50	V
VI	Input voltage ⁽²⁾			30	V
	Peak collector current	See Figure 14		500	mA
I _{OK}	Output clamp current		500	mA	
	Total emitter-terminal current			-2.5	А
PD	Continuous total power dissipation		See Dissip Ratings T		
Ŧ		ULQ200xAT	-40	105	°C
T _A	Operating free-air temperature range	ULQ200xAQ	-40	125	-C
0	Package thermal impedance $^{(3)}$ $^{(4)}$	D package		73	°C/W
θ_{JA}	Fackage merman impedance (* (*)		108	0/11	
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)

All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. (3)

(4)

DISSIPATION RATINGS

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 85°C POWER RATING	T _A = 105°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	494 mW	342 mW	190 mW

SGLS148D - DECEMBER 2002 - REVISED APRIL 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

D	PARAMETER TEST		TEST CONDITIONS		UL	Q2003	AT	ULQ2003AQ			ULQ2004AT			UNIT		
P/	ARAMETER	FIGURE	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
				I _C = 125 mA									5			
	, On-state input			I _C = 200 mA			2.7			2.7			6			
M			V _{CE} = 2 V	I _C = 250 mA			2.9			2.9				v		
V _{I(on)}	voltage	Figure 6	$v_{CE} = 2 v$	I _C = 275 mA									7	v		
				I _C = 300 mA			3			3						
				I _C = 350 mA									8			
	Collector-emitter		$I_{I} = 250 \ \mu A$,	I _C = 100 mA		0.9	1.2		1	1.3		0.9	1.1			
V _{CE(sat)}	saturation	Figure 5	$I_{I} = 350 \ \mu A$,	I _C = 200 mA		1	1.4		1	1.5		1	1.3	V		
	voltage	$I_{I} = 500 \ \mu A$,	I _C = 350 mA		1.2	1.7		1.2	1.8		1.2	1.6				
	Collector cutoff	Eiguro 1	V _{CE} = 50 V,	$T_A = 25^{\circ}C$			100			100			50			
1		$I_1 = 0$	T _A = 105°C			165							μA			
I _{CEX}	current	Figure 2	Figure 2	Figure 2	V _{CE} = 50 V	$I_I = 0$									100	μΑ
		rigure z	VCE - 30 V	V _I = 1 V									500			
V _F	Clamp forward voltage	Figure 8	I _F = 350 mA			1.7	2.2		1.7	2.2		1.7	2.1	V		
I _{I(off)}	Off-state input current	Figure 3	V _{CE} = 50 V,	$I_C = 500 \ \mu A$	30	65		30	65		50	65		μA		
			V _I = 3.85 V			0.93	1.35		0.93	1.35						
I _I	Input current	Figure 4	V _I = 5 V									0.35	0.5	mA		
			V _I = 12 V									1	1.45			
	Clamp reverse	V - 50 V	$T_A = 25^{\circ}C$			100			100			50	^			
I _R	current	Figure 7	V _R = 50 V				100			100			100	μA		
Ci	Input capacitance		V ₁ = 0,	f = 1 MHz		15	25		15	25		15	25	pF		

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	ULQ2003/	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 9		1	10	μS
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 9		1	10	μS
V _{OH}	High-level output voltage after switching	V_{S} = 50 V, I _O = 300 mA, See Figure 10	V _S - 500			mV

Copyright © 2002–2010, Texas Instruments Incorporated

PARAMETER MEASUREMENT INFORMATION

Figure 1. I_{CEX} Test Circuit

Figure 3. I_{I(off)} Test Circuit

 $C. \quad I_I \text{ is fixed for measuring } V_{CE(sat)} \text{, variable for measuring } h_{FE}.$

Figure 5. h_{FE}, V_{CE(sat)} Test Circuit

Figure 7. I_R Test Circuit

VOLTAGE WAVEFORMS

Figure 9. Propagation Delay-Time Waveforms

Figure 2. I_{CEX} Test Circuit

Figure 6. V_{I(on)} Test Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

- A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_0 = 50 \Omega$.
- B. C_L includes probe and jig capacitance.
- C. For testing the ULQ2003A, $V_{IH} = 3 V$; for the ULQ2004A, $V_{IH} = 8 V$.

Figure 10. Latch-Up Test Circuit and Voltage Waveforms

6

JLQ2003A-Q1 ULQ2004A-Q1 SGLS148D-DECEMBER 2002-REVISED APRIL 2010

8

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
ULQ2003AQDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2003ATDG4Q1	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2003ATDQ1	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2003ATDRG4Q1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2003ATDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2003ATPWRQ1	ACTIVE	TSSOP	PW	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2004ATDRG4Q1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
ULQ2004ATDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

31-Dec-2011

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ULQ2003A-Q1, ULQ2004A-Q1 :

• Catalog: ULQ2003A, ULQ2004A

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULQ2003ATPWRQ1	TSSOP	PW	16	2500	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ULQ2003ATPWRQ1	TSSOP	PW	16	2500	367.0	367.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated