DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC2731GS

L-BAND SILICON DOWN-CONVERTER IC WITH AGC AMPLIFIER

DESCRIPTION

The μ PC2731GS is a silicon monolithic integrated circuit designed for DBS tuner and mobile communications. This IC consists of double balanced mixer, local oscillator, IF amplifier, regulator and AGC amplifier. This means that L-band down-converter and AGC amplifier are integrated in 1 chip. This 1 chip IC is packaged in 20-pin SOP suitable for high-density surface mounting. Thus, this product contributes to produce physically-small DBS tuner and mobile communication equipments.

The µPC2731GS is manufactured using NEC's 20 GHz f⊤ NESAT[™] III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion and migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- L-Band Operation fRF = 0.9 G to 2.0 GHz
- · L-Band down-converter and AGC amplifier are integrated in 1 chip
- 50 Ω impedance output
- Supply voltage 5.0 V TYP.
- Circuit current IccTOTAL = 69 mA (Down-converter: 42 mA, AGC Amplifier: 27 mA)
- · Packaged in 20-pin SOP suitable for high-density surface mounting

* APPLICATION

• L-Band receiver (0.9 to 2.0 GHz)

★ ORDERING INFORMATION

Part Number	Package	Supplying Form
μPC2731GS-E1	20-pin plastic SOP (7.62 mm (300))	Embossed tape 24 mm wide. Pin 1 indicates pull-out direction of tape. Qty 2.5 kp/reel.

Remark To order evaluation samples, please contact your local NEC sales office (Part number for sample order: μ PC2731GS).

Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PRODUCT LINE-UP (TA = +25°C, Vcc = 5.0 V)

Main Feature	Part Number	f _{RF} (GHz)	CG (dB)	NF (dB)	D _{AGC} (dB)	Gagc max. (dB)	Package
50 Ω impedance output	μPC2721GR/GV	0.9 to 2.0	21	11	-	_	8-pin SOP/ SSOP
High impedance output	μPC2722GR/GV	0.9 to 2.0	18	11	-	_	8-pin SOP/ SSOP
 Equipped with AGC amplifier 50 Ω impedance output 	μΡC2731GS	0.9 to 2.0	14	14	60	25	20-pin SOP

TYPICAL SYSTEM APPLICATION

PIN EXPLANATIONS

Pin No.	Pin Name	Pin Voltage (V)	Function and Applications	Internal Equivalent Circuit
1	RF INPUT 1	2.5	 ① and ② pins are inputs for mixer designed as double balanced type. Either pin can be assigned for input and another for ground. 	
2	RF INPUT 2 (bypass)	2.5		
3	GND	O ^{Note}	Must be connected to the system ground with minimum inductance. Ground pat- tern on the board should be formed as wide as possible. (Track length should be kept as short as possible.)	
4	OSC Base (feedback)	2.9	Internal oscillator consist in balance am- plifier. ④ and ⑤ pins should be externally equipped with tank resonater circuit in order to oscillate with feedback loop.	
5	OSC Collector	5.0	6 pin should be grounded through cou- pling capacitor (example: 0.5 pF).	
6	OSC Base (bypass)	2.9	(5) pin is defined as open collector. This pin should be coupled through resistor or chock coil in order to adjust Q and be supplied voltage to. In case of undesired oscillation, adjust its Q lower to stabilize the operation.	Vcc
7	OSC OUTPUT	3.7	Oscillator output pin. Must be connected PLL synthesizer IC's input pin.	
8	NC	_	Non connection pin.	
9	Vcc	$5.0\pm0.5^{\text{Note}}$	Supply voltage pin for AGC amplifier. Must be conneced bypass capacitor (example: 1 000 pF) to minimize ground impedance.	
10	GND	O ^{Note}	Must be connected to the system ground with minimum inductance. Ground pat- tern on the board should be formed as wide as possible. (Track length should be kept as short as possible).	

Note Externally supply voltage

Pin No.	Pin Name	Pin Voltage (V)	Function and Applications	Internal Equivalent Circuit
11	AGC out switch (SW control)	V _{SW} ^{Note} H: 5 V L: 0 V	(2) and (3) pins are outputs of AGC amplifier. These pins can be selected by Vsw voltage to (1) pin.	
			AGC out pin out Pin No.	
12	AGC OUTPUT 2	2.2	H: 5 V out 1 (3)	
13	AGC OUTPUT 1	2.2	Vsw L: Open out 2 12 11 or GND 0 12	
14	AGC out level control	(open: 2.0) 0 to 5.0 ^{№0®}	impedance constant. Auto gain control pin. This pin's bias govern the AGC out level.	
15	Vcc	$5.0\pm0.5^{\text{Note}}$	Supply voltage pin for AGC amplifier. Must be conneced bypass capacitor (example: 1 000 pF) to minimize ground impedance.	
16	AGC INPUT 2 (bypass)	2.0	Bypass pin of AGC amplifier input. Must be grounded through capacitor.	
17	AGC INPUT 1	2.0	Input of AGC amplifier. Must be coupled with capacitor to cut DC. (example: 1 000 pF)	
18	GND	O ^{Note}	Ground pin of AGC amplifier. Must be connected to the system ground with minimum inductance. Ground pattern should be formed as wide as possible. (Track length be kept as short as possible.)	
19	IF OUTPUT	2.0	Output from IF amplifier of down- converter. This amplifier is designed as single-end push-pull amplifier. This pin is assigned for the emitter follower output whit 50 Ω impedance.	
20	Vcc	$5.0\pm0.5^{\text{Note}}$	Supply voltage pin for down-converter. Operates on 5.0 ± 0.5 V. Must be connected bypass capacitor (example: 1 000 pF) to minimize ground impedance.	

Note Externally supply voltage

NEC

★ ABSOLUTE MAXIMUM RATINGS

Parameters	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = + 25°C, pin 9, 15 and 20	6.0	V
AGC Control Voltage	VAGC	T _A = + 25°C, pin 14	5.5	V
SW Control Voltage	Vsw	T _A = + 25°C, pin 11	5.5	V
Power Dissipation	P⊳	T _A = + 85°C Note	650	mW
Operating Ambient Temperature	TA		-20 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

Note Mounted on $50 \times 50 \times 1.6$ -mm epoxy glass PWB, with copper patterning on both sides.

RECOMMENDED OPERATING RANGE

Parameters	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
AGC Control Voltage	VAGC	0	-	5.0	V
SW Control Voltage	Vsw	0	-	5.0	V
Operating Ambient Temperature	TA	-20	+25	+85	°C

ELECTRICAL CHARACTERISTICS (T_A = + 25°C, V_{CC} = 5.0 V, Z_L = Z_S = 50 Ω)

Parar	Parameters		Test Conditions	MIN.	TYP.	MAX.	Unit
	Down-converter	lcc	No Input Signal	28.7	42.0	54.0	mA
Circuit Current	AGC Amplifier			15.3	27	38	
	IC Total			44	69	92	
Down-converter B	lock: unless otherwi	se specified,	fı⊧ = 403 MHz				
Lower RF Input Fr	requency	frFI	P _{in} = - 30 dBm	-	-	0.9	GHz
Upper RF Input Fr	requency	fRFu	Pin = - 30 dBm	2.0	_	_	GHz
Conversion Gain ?	1	CG1	frf = 900 MHz	11.5	14.5	17.5	dB
Conversion Gain 2	2	CG2	frf = 2 GHz	10.5	13.5	16.5	dB
IF Maximum Outp	ut Power	Po(sat)	frf = 2 GHz	0	+7	+10	dBm
Noise Figure 1		NF1	frf = 900 MHz	-	12	15	dB
Noise Figure 2		NF2	frf = 2 GHz	-	17	20	dB
AGC Amplifier Blo	ock: unless otherwise	e specified, fir	= 403 MHz				
Lower AGC Input	Frequency	fıFı	3 dB down CG from fi⊧ = 403 MHz	-	_	140	MHz
Upper AGC Input	Frequency	fiFu	3 dB down CG from fi⊧ = 403 MHz	550	-	-	MHz
Conversion Gain ?	1	GPMAX.	P _{in} = −60 dBm	_	25	_	dB
Conversion Gain 2	2	GPMIN.	P _{in} = −10 dBm	_	-40	_	dB
Gain Control Rang	ge	GC	$V_{AGC} = 0 \text{ to } 5.0 \text{ V}, \text{ P}_{in} = -30 \text{ dBm}$	45	65	-	dB

STANDARD CHARACTERISTIC FOR REFERENCE (TA = $+25^{\circ}$ C, Vcc = 5.0 V, ZL = Zs = 50 Ω)

Parameters	Symbol	Conditions	Ref	Reference Values		Unit
			MIN.	TYP.	MAX.	
Down-converter Block: unless otherwi	se specified,	fif = 403 MHz				
3rd Order Intermodulation Distortion	IМз	frF = 2.0 GHz, 2.04 GHz Pin = -20 dBm	_	-39	-	dBc
Local Oscillator Frequency	flo	Internal local oscillating	1.3	Ι	2.4	GHz
Noise Figure 2'	NF2'	Internal local oscillating frF = 2 GHz	-	14	-	dB
AGC Amplifier Block: unless otherwise	e specified, fir	= 403 MHz				
Input Dynamic Range	Drange	Range kept Po = $-30 \pm 1 \text{ dB}$ (V _{AGC} variable)	-	60	-	dB
3rd Order Intermodulation Distortion	IМз	fıFin = 400 MHz, 420 MHz VAGC = 0 V, Po = -20 dBm	-	-50	-	dBc
SW Control Voltage	Vsw	AGC _{OUT1}	4	5	6	V
		AGC _{OUT2}	0	0	1	V

TEST CIRCUIT

\square		AGC out pin		
		Output	Pin No.	
	H: 5 V	output 1	13	
Vsw 11 pin	L: Open or 0 V	output 2	12	

APPLICATION CIRCUIT EXAMPLE

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

★ PACKAGE DIMENSIONS

20 PIN PLASTIC SOP (7.62 mm (300)) (UNIT: mm)

NOTE Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electrostatic sensitive devices.
- (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
- (3) Keep the track length of the ground pins as short as possible.
- (4) Connect a bypass capacitor (example: 1 000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Nete}	_

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.