

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC319$

HIGH SPEED DUAL COMPARATORS

DESCRIPTION

The μ PC319 is a precision high speed dual comparator designed to operate over a wide range of supply voltage down to a 5 V logic supply and ground. Further advantage, they have excellent input characteristics and direct drive capability to all the popular logic families.

FEATURES

- Operate from single 5 V supply
- Typically 80 ns response time at ± 15 V
- Open collector output
- Minimum fan-out of 2 each side (TTL)
- High commom mode slew rate

ORDERING INFORMATION

PART NUMBER	PACKAGE	QUALITY GRADE	
μPC319C	14 PIN PLASTIC DIP (300 mil)	Standard	
μPC319G2	14 PIN PLASTIC SOP (225 mil)	Standard	

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS (T_a = 25 °C)

PARAMETER		SYMBOL	μPC319	UNIT	
Voltage between V^+ and V^- (Note 1)		(Note 1)	V ⁺ -V ⁻	0.3 to +36	v
Differential Input Voltage			Vid	±5	v
Input Voltage		(Note 2)	VI	V ⁻ -0.3 to V ⁺ +0.3	v
Output to Negative Supply Voltage		(Note 3)	Vo – V [–]	-0.3 to +36	v
Ground to Negative Supply Voltage		(Note 3)	$V GND - V^{-}$	- 0.3 to +25	v
Ground to Positive Supply Voltage		(Note 3)	V ⁺ – V gnd	-0.3 to +18	V
Power Dissipation	C Package	(Note 4)	PT -	570	mW
	G2 Package	(Note 5)		550	mW
Output Short Circuit Duration (Note 6)			10	sec	
Operating Temperature Range		Topt	20 to +80	°C	
Storage Temperature Range		Tstg	55 to +125	°C	

Note 1. Reverse connection of supply voltage can cause destruction.

- Note 2. The input voltage should be allowed to input without damage or destruction. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The normal operation will establish when the both inputs are within the Common Mode Input Voltage Range of electrical characteristics.
- **Note 3.** This specification is the voltage which sholud be allowed to supply to the output and GND terminal from external without damage or destructive. Even during the transition period of supply voltage, power on/off etc., this specification should be kept.
- Note 4. Thermal derating factor is -7.6 mV/°C when ambient temperature is higher than 50 °C.
- Note 5. Thermal derating factor is -5.5 mV/°C when ambient temperature is higher than 25 °C.
- **Note 6.** Pay careful attention to the total power dissipation not to exceed the absolute maximum ratings, Note 4 and Note 5.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage (Split)	V [±]	±5		±16	v
Supply Voltage (V ⁻ = GND)	V ⁺	+5		+32	v

TYPICAL CONNECTIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Offset Voltage	Vio		±2.0	±8.0	mV	$V^+ - V^- = 5 V$ to 30 V, Rs $\leq 5 k\Omega$
Input Offset Current	110		±80	±200	nA	$V^{+} - V^{-} = 5 V \text{ to } 30 V$
Input Bias Current	Ів		400	1000	nA	$V^+ - V^- = 5 V \text{ to } 30 V$
Voltage Gain	Av	8	40		V/mV	
Response Time			80		ns	Input 100 mV, Overdrive 5 mV
Output Saturation Voltage	Vo∟		0.75	1.5	v	V _{IN} ≦ −10 mV, Io = 25 mA
Output Leakage Current	I O LEAK		0.2	10	μA	V in ≧ 10 mV, Vo = 35 V
Positive Supply Current	l+		4.3		mA	$V^+ = +5 V$, $V^- = 0 V$, $I_0 = 0 A$, Both Comparators
Positive Supply Current	1+		8.0	12.5	mA	Io = 0 A, Both Comparators
Negative Supply Current	1-		3.0	5.0	mA	Io = 0 A, Both Comparators
Input Offset Voltage	Vio		-	±10	mV	$V^+ - V^- = 5~V$ to 30 V, Rs $\leq 5~k\Omega,~T_a = 0$ to 70 °C
Input Offset Current	Но			±300	nA	$V^{+} - V^{-} = 5 V \text{ to } 30 V$, $T_a = 0 \text{ to } 70 ^{\circ}\text{C}$
Input Bias Current	Ів			1200	nA	$V^+ - V^- = 5 V \text{ to } 30 V$, $T_a = 0 \text{ to } 70 ^{\circ}\text{C}$
Common Mode Input Voltage Range	Vісм		±13		v	
Output Saturation Voltage	Vol		0.23	0.4	v	$V^+ \ge 4.5 V$, $V^- = 0 V$, $V_{IN} \le -10 mV$, $Io \le 3.2 mA$

ELECTRICAL CHARACTERISTICS (V \pm = ±15 V, T_a = 25 °C)

TYPICAL APPLICATION CIRCUIT

CAMPARATOR with HYSTERESIS CIRCUIT

Threshold Voltage

 $V_{\text{TH(High)}} \coloneqq V_{\text{REF}} + \frac{R_1}{R_L + R_2 + R_1} \text{ (V}_{\text{RL}} - V_{\text{REF}} \text{)}$

 $\mathsf{V}_{\mathsf{TH(LOW)}} \coloneqq \mathsf{V}_{\mathsf{REF}} - \frac{R_1}{R_1 + R_2} \; (\mathsf{V}_{\mathsf{REF}} - \mathsf{V}_{\mathsf{OL}})$

 $(V_{RL} > V_{REF} > V_{OL})$

V[±] = ±15 V

60

80

TYPICAL PERFORMANCE CHARACTERISTICS (Ta = 25 °C, TYP.) INPUT BIAS CURRENT INPUT OFFSET CURRENT POWER DISSIPATION 500 800 PT - Total Power Dissipation - mW Is -- Input Bias Current -- nA Ito -- Input Offset Current -- nA 400 lв 319C 600 300 319G2 400 200 200 100 10 0 20 40 60 80 100 0 -20 0 20 40 T_a – Ambient Temperature – °C Ta - Ambient Temperature - °C INPUT CURRENT COMMON MODE Input Voltage Range 1000 V⁺

5

14PIN PLASTIC DIP (300 mil)

P14C-100-300B1

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	20.32 MAX.	0.800 MAX.
В	2.54 MAX.	0.100 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{±0.10}	0.020+0.004
F	1.2 MIN.	0.047 MIN.
G	3.6 ^{±0.3}	0.142 ^{±0.012}
н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
к	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
М	0.25+0.10	0.010+0.004
N	0.25	0.01

14 PIN PLASTIC SOP (225 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

detail of lead end

S14GM-50-225B, C-2

ITEM	MILLIMETERS	INCHES
А	10.46 MAX.	0.412 MAX.
B	1.42 MAX.	0.056 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	0.016+0.004
E	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071MAX.
G	1.49	0.059
Н	6.5±0.3	0.256±0.012
I	4.4	0.173
J	1.1	0.043
К	0.15 ^{+0.10} 0.05	0.006+0.004
L	0.6±0.2	0.024 ^{+0.008}
М	0.12	0.005
N	0.15	0.006

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see tables below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case other soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

[µPC319G2]

Soldering method	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 1, Exposure limit*: None	IR30-00-1
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 1, Exposure limit*: None	VP15-00-1
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit*: None	WS15-00-1
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 10 seconds or below, Exposure limit*: None	

*: Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Note: Do not apply more than a single process at once, except for "Partial heating method".

TYPES OF THROUGH HOLE DEVICE

[µPC319C]

Soldering method	Soldering conditions	Recommended condition symbol
Wave soldering	Solder temperature: 260 °C or below, Flow time : 10 seconds or below	

[MEMO]

No part of this document may be copied or reproduced in any from or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6