

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC4064$

QUAD J-FET INPUT LOW-POWER OPERATIONAL AMPLIFIER

DESCRIPTION

The μ PC4064 is a low power J-FET input quad operational amplifier that will operate at voltage levels as low as ±2.0 V. Input current is typically less than 1 mA. With input bias and offset currents as low as a few pA, the μ PC4064 is an excellent choice for hand-held measurement equipment.

EQUIVALENT CIRCUIT (1/4 Circuit)

FEATURES

- Low supply current: 800 µA (TYP.)
- Very low input bias and offset currents
- High input impedance...J-FET Input Stage
- Low supply voltage operation
- Output short circuit protection
- Internal frequency compensation

$\circ v$ ŹR₁ R۹ R4 Ż Q14 Q9µ O15 Qie Os R8 II C R7 Q1 Q2 Q17 IN O Q18 Q13 OUT 719 R₂≶ R₃ R6 οv

CONNECTION DIAGRAM (Top View)

ORDERING INFORMATION

PART NUMBER	PACKAGE	QUALITY GRADE	
μΡC4064C	14 PIN PLASTIC DIP (300 mil)	Standard	
μPC4064G2	14 PIN PLASTIC SOP (225 mil)	Standard	

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

PARAMETER		SYMBOL	μPC4061	UNIT
Voltage between V* and V~ (Note1)		V* –V ⁻	-0.3 to +36	V
Differential Input Voltage		Vid	±30	V
Input Voltage (Note 2)		Vi	V ⁻ -0.3 to V ⁺ +0.3	V
Output Voltage (Note 3)		Vo	V ⁻ -0.3 to V ⁺ +0.3	V
Power Dissipation	C Package (Note 4)	Рт	570	mW
	G2 Package (Note 5)		550	mW
Output Short Circuit Duration (Note 6)			Indefinite	sec
Operating Temperature Range		Topt	-20 to + 80	°C
Storage Temperature Range		Tstg	-55 to + 125	°C

Note 1. Reverse connection of supply voltage can cause destruction.

- **Note 2.** The input voltage should be allowed to input without damage or destruction. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The normal operation will establish when the both inputs are within the Common Mode Input Voltage Range of electrical characteristics.
- **Note 3.** This specification is the voltage which should be allowed to supply to the output terminal from external without damage or destructive. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics.
- Note 4. Thermal derating factor is -7.6 mV/°C when ambient temperature is higher than 50 °C.
- Note 5. Thermal derating factor is -5.5 mV/°C when ambient temperature is higher than 25 °C.
- **Note 6.** Pay careful attention to the total power dissipation not to exceed the absolute maximum ratings, Note 4 and Note 5.

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V±	± 2		± 16	V
Output Current (SOURCE)	IO SOURCE			5	mA
Output Current (SINK)	Іо зілк			3.5	mA
Capacitive Load (A _v = +1)	CL			100	pF

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Offset Voltage	Vio		±2	±10	mV	Rs ≦ 50 Ω
Input Offset Current (Note7)	lio		±5	±50	pА	
Input Bias Current (Note7)	Ів		10	100	pА	
Large Signal Voltage Gain	Αυ	3	9		V/mV	$R_L \ge 10 \ k\Omega$, $V_0 = \pm 10 \ V$
Supply Current	lcc		800	1000	μA	lo = 0 A, Both Amplifiers
Common Mode Rejection Ratio	CMR	70	90		dB	
Supply Voltage Rejection Ratio	SVR	70	90		dB	
Output Voltage Swing	Vom	±12	+14.0 -13.6		v	$R_{\iota} \ge 10 \ k\Omega$
Common Model Input Voltage Range	Viaм	±12	+15 -13		V	
Slew Rate	SR		3		V/μs	Aυ = 1
Unity Gain Frequency	funity		1		MHz	
Input Equivalent Noise Voltage Density	en		30		nV/√Hz	Rs = 100 Ω, f = 1 kHz
Channel Separation			120		dB	
Input Offset Voltage	Vio			±15	mV	Rs \leq 50 Ω , Ta = -20 to +70 °C
Average VIO Temperature Drift	⊿Vıo/⊿T		±10		μV/°C	$T_{a} = -20 \text{ to } +70 \text{ °C}$
Input Offset Current (Note7)	lio			±2	nA	$T_{a} = -20$ to +70 °C
Input Bias Current (Note7)	Ів			3.5	nA	$T_a = -20 \text{ to } +70 \text{ °C}$

ELECTRICAL CHARACTERISTICS (Ta = 25 °C, V[±] = \pm 15 V)

Note 7. Input bias currents flow into IC. Because each currents are gate leak current of channel J-FET on input stage.

And that are temperature sensitive. Short time measuring method is recommendable to maintain the junction temperature close to the ambient temperature.

TYPICAL PERFORMANCE CHARACTERISTICS (Ta = 25 °C, TYP.)

OUTPUT VOLTAGE SWING

4

5

 $\begin{array}{l} A_{\upsilon} = \pm 1 \\ R_{L} = 10 \ k\Omega \\ C_{L} = 100 \ pF \\ V^{\pm} = \pm 15 \ V \end{array}$ Input voltage – V/Output Voltage – V 0 -5 ≵ 5 Input 0 --5 0 5 10 15 20 Time – µs INPUT BIAS CURRENT 100 $V^{\pm} = \pm 15 V$ ls – Input Bias Current – nA 10 1.0 0.1 0.01 -20 20 0 40 60 80

VOLTAGE FOLLOWER PULSE RESPONSE

Output

T₁ - Ambient Temperature - °C

±10

V[±] – Supply Voltage – V

±5

1000

800

600

400

200

0

lcc – Supply Current – µA

INPUT EQUIVALENT NOISE VOLTAGE DENSITY

±20

±15

14PIN PLASTIC DIP (300 mil)

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- Item "K" to center of leads when formed parallel.

P14C-100-300B1

ТЕМ	MILLIMETERS	INCHES
A	20.32 MAX.	0.800 MAX.
В	2.54 MAX.	0.100 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{±0.10}	0.020+0.004
F	1.2 MIN.	0.047 MIN.
G	3.6 ^{±0.3}	0.142 ^{±0.012}
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
к	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
м	0.25 +0.10	0.010+0.004
N	0.25	0.01

14 PIN PLASTIC SOP (225 mil)

detail of lead end

S14GM-50-225B, C				
ITEM	MILLIMETERS	INCHES		
A	10.46 MAX.	0.412 MAX.		
В	1.42 MAX.	0.056 MAX.		
С	1.27 (T.P.)	0.050 (T.P.)		
D	0.40+0.10	0.016 ^{+0.004} -0.003		
E	0.1±0.1	0.004±0.004		
F	1.8 MAX.	0.071MAX.		
G	1.49	0.059		
н	6.5±0.3	0.256±0.012		
1	4.4	0.173		
J	1.1	0.043		
K	0.15 ^{+0.10} -0.05	0.006 ^{+0.004} -0.002		
L	0.6±0.2	0.024 ^{+0.008}		
M	0.12	0.005		
N	0.15	0.006		

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product. Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

[µPC4064G2]

Soldering method	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 1, Exposure limit*: None	IR30–00–1
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 1, Exposure limit*: None	VP15-001
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below Number of flow process: 1, Exposure limit*: None	WS15-00-1
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 10 seconds or below, Exposure limit*: None	

*: Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Note: Do not apply more than a single process at once, except for "Partial heating method."

TYPES OF THROUGH HOLE DEVICE

[µPC4064C]

Soldering method	Soldering conditions	Recommended condition symbol
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below	

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any from or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6