MOS INTEGRATED CIRCUIT μ PD178F098

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

E

The μ PD178F098 is a flash memory model of the μ PD178076, 178078, 178096, and 178098, and is provided with a flash memory to/from which data can be written/erased with the microcontroller mounted on a printed circuit board.

For the detailed functional description, refer to the following User's Manuals:

μPD178078, 178098 Subseries User's Manual: U12790E 78K/0 Series User's Manual - Instruction : U12326E

FEATURES

- Serial interface (UART mode)
- IEBus[™] controller
- Pin-compatible with mask ROM models (except VPP pin)
- Flash memory: 60K bytes^{Note}
- Internal high-speed RAM: 1024 bytes
- Internal extension RAM: 2048 bytes^{Note}
- Buffer RAM: 32 bytes
- Operable at same supply voltage as mask ROM models (VDD = 4.5 to 5.5 V during PLL operation)
 - **Note** The capacities of the flash memory and internal extension RAM can be changed using the memory size select register (IMS) and internal extension RAM size select register (IXS).

Remark For the differences between the flash memory model and mask ROM models, refer to **1. DIFFERENCES BETWEEN** μ**PD178F098 AND MASK ROM MODELS**.

The electrical specifications (such as supply current) in the μ PD178F098 differ from those of the mask ROM models. Confirm these differences before mass-producing any application set.

APPLICATION FIELD

Car stereos

ORDERING INFORMATION

Part Number

Package

μPD178F098GF-3BA

100-pin plastic QFP (14 × 20)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ DEVELOPMENT OF 8-BIT DTS SERIES

FUNCTIONAL OUTLINE

	Item	Functions					
Internal	Flash memory	60K bytes					
memory	High-speed RAM	1024 bytes					
	Buffer RAM	32 bytes					
	Extension RAM	2048 bytes					
General-pur	pose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Minimum in:	struction execution	• 0.32 μs/0.64 μs/1.27 μs/2.54 μs/5.08 μs (with crystal resonator of fx	a = 6.3 MHz)				
time		• 0.44 μ s/0.89 μ s/1.78 μ s/3.56 μ s/7.11 μ s (with crystal resonator of fx	a = 4.5 MHz) ^{Note 1}				
Instruction s	set	 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test Boolean operation) BCD adjustment, etc. 					
I/O port		Total : 80 pins					
		CMOS input : 8 pins					
		• CMOS I/O : 64 pins					
		N-ch open-drain output: 8 pins					
A/D convert	er	8-bit resolution × 8 channels					
Serial interf	ace	 3-wire/SBI/2-wire/I²C bus^{Note 2} mode selectable 3-wire mode 3-wire mode (with automatic transmit/receive function of up to 32 bytes): 1 channel UART mode 1 channel 					
	ollor	UART mode : 1 channel Provided					
IEBus controller Timer		Basic timer (timer carry FF (10 Hz)) 16-bit timer/event counter 2 channel 2 channel					
		Watchdog timer : 1 channel					
Buzzer outp	out	BEEP0 pin: 1 kHz, 1.5 kHz, 3 kHz, 4 kHz					
		BUZ pin: 0.77 kHz, 1.54 kHz, 3.08 kHz, 6.15 kHz (with crystal resona	tor of $fx = 6.3$ MH				
Vectored	Maskable	Internal : 15, External: 8					
interrupt	Non-maskable	Internal: 1					
source	Software	1					
PLL	Division mode	2 types					
frequency		Direct division mode (VCOL pin)					
synthesizer	Reference frequency	Pulse swallow mode (VCOL and VCOH pins) Seven types selectable in software (1, 3, 9, 10, 12.5, 25, 50 kHz)					
	Charge pump	Error out output: 2 pins					
	Phase comparator	Error out output: 2 pins Unlock detectable in software					

- **Notes 1.** When using the IEBus controller, the 4.5-MHz crystal resonator cannot be used. Use the 6.3-MHz crystal resonator.
 - When the I²C bus mode is used (including when the mode is implemented in software without using the peripheral hardware), consult NEC when ordering a mask.

(2/2)

Item	Functions
Frequency counter	Frequency measurement
	AMIFC pin: For 450-kHz counting
	FMIFC pin: For 450-kHz/10.7-MHz counting
Standby function	• HALT mode
	• STOP mode
Reset	Reset by RESET pin
	Internal reset by watchdog timer
	Reset by power-ON clear circuit
	• Detection of less than 4.5 V ^{Note} (Reset does not occur, however.)
	 Detection of less than 3.5 V^{Note} (during CPU operation)
	Detection of less than 2.3 V ^{Note} (in STOP mode)
Supply voltage	• V _{DD} = 4.5 to 5.5 V (during CPU, PLL operation)
	• V _{DD} = 3.5 to 5.5 V (during CPU operation)
Package	100-pin plastic QFP (14 \times 20)

Note These voltages are the maximum values. In practice, the chip may be reset at voltages lower than these.

PIN CONFIGURATION (Top View)

• 100-pin plastic QFP (14 \times 20) μ PD178F098GF-3BA

Cautions 1. Directly connect the VPP pin to GND0, GND1, or GND2 in normal operating mode.

- 2. Keep the voltage at AV_DD, VDDPORT, and VDDPLL same as that at the VDD pin.
- 3. Keep the voltage at AVss, GNDPORT, and GNDPLL same as that at GND0, GND1, or GND2.
- 4. Connect each of the REGOSC and REGCPU pins to GND via a 0.1- μ F capacitor.

NEC

Pin Name			
AMIFC	: AM intermediate frequency counter	REGOSC	: Regulator for oscillation circuit
	input	RESET	: Reset input
ANIO-ANI7	: A/D converter input	RXD0	: UART0 serial data input
AVdd	: A/D converter power supply	RX0	: IEBus serial data input
AVss	: A/D converter ground	SB0, SB1	: Serial data bus input/output
BUSY	: Busy output	SCK0, SCK1, SCK3	: Serial clock input/output
BEEP0, BUZ	: Buzzer output	SCL	: Serial clock input/output
EO0, EO1	: Error out output	SDA0, SDA1	: Serial data input/output
FMIFC	: FM intermediate frequency counter	SI0, SI1, SI3	: Serial data input
	input	SO0, SO1, SO3	: Serial data output
GNDPLL	: PLL ground	STB	: Strobe output
GND0-GND2	: Ground	TI00, TI01	: 16-bit timer capture trigger input
INTP0-INTP7	: Interrupt input	TI50, TI51	: 8-bit timer clock input
P00-P07	: Port 0	TO0	: 16-bit timer output
P10-P17	: Port 1	TO50, TO51	: 8-bit timer output
P20-P27	: Port 2	TXD0	: UART0 serial data output
P30-P37	: Port 3	TX0	: IEBus serial data output
P40-P47	: Port 4	VCOL, VCOH	: Local oscillation input
P50-P57	: Port 5		: Port power supply
P60-P67	: Port 6	VddPLL	: PLL power supply
P70-P77	: Port 7	Vdd	: Power supply
P100-P102	: Port 10	VM45	: VDD = 4.5 V monitor output
P120-P124	: Port 12	Vpp	: Programming power supply
P130-P137	: Port 13	X1, X2	: Crystal resonator
REGCPU	: Regulator for CPU power supply		

BLOCK DIAGRAM

CONTENTS

	1.	DIFFERENCES BETWEEN μ PD178F098 AND MASK ROM MODELS	9
	2.	PIN FUNCTION LIST - 2.1 Port Pins - 2.2 Pins Other Than Port Pins - 2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins -	10 11
	3.	MEMORY SIZE SELECT REGISTER (IMS)	17
	4.	INTERNAL EXTENSION RAM SIZE SELECT REGISTER (IXS)	18
	5.	INTERRUPT FUNCTION	19
	6.	FLASH MEMORY PROGRAMMING	23
		6.1 Selecting Communication Mode	23
		6.2 Flash Memory Programming Function	24
		6.3 Connecting Flashpro III	25
*		ELECTRICAL SPECIFICATIONS	
	8.	PACKAGE DRAWING	44
*	9.	RECOMMENDED SOLDERING CONDITIONS	45
	APF	PENDIX A. DEVELOPMENT TOOLS	46
	APF	PENDIX B. RELATED DOCUMENTS	48

1. DIFFERENCES BETWEEN μ PD178F098 AND MASK ROM MODELS

The μ PD178F098 is provided with a flash memory to/from which data can be written/erased with the device mounted on a printed circuit board. The differences between the flash memory model (μ PD178F098) and mask ROM models (μ PD178076, 178078, 178096, and 178098) are shown in Table 1-1.

Iter	n	μ PD178F098	μPD178076, 178078	μPD178096, 178098
Internal memory	ROM structure	Flash memory	Mask ROM	
	ROM capacity	60K bytes	µPD178076: 48K bytes	μPD178096: 48K bytes
			µPD178078: 60K bytes	µPD178098: 60K bytes
	External	2048 bytes	µPD178076: 1024 bytes	μPD178096: 1024 bytes
	extension RAM		µPD178078: 2048 bytes	µPD178098: 2048 bytes
Internal ROM capa	city selected by	Equivalent to mask ROM	μPD178076: CCH	μPD178096: CCH
memory size selec	t register (IMS)	model	μPD178078: CFH	μPD178098: CFH
Internal extension	RAM capacity	Equivalent to mask ROM	μPD178076: 0AH	μPD178096: 0AH
selected by internal extension RAM		model	μPD178078: 08H	μPD178098: 08H
size select register (IXS)				
Serial interface		4 channels	3 channels	
		 3-wire/SBI/2-wire/I²C bus 	 3-wire/SBI/2-wire/I²C bus 	
		 3-wire (with automatic transmission) 	mode selectable	
		• 3-wire	3-wire (with automatic	
		• UART	transmit/receive function)	
			1	• 3-wire
IEBus controller		Provided	Not provided	Provided
Interrupt source		24	22	21
IC pin		Not provided	Provided	
VPP pin		Provided		
Electrical specifica	tions and	See the relevant data shee	et	
recommended sold	lering conditions			

Table 1-1. Differences between μ PD178F098 and Mask ROM Models

Caution The noise resistance and noise radiation differ between flash memory versions and mask ROM versions. When considering the replacement of flash memory versions with mask ROM versions in the process from trial manufacturing to mass production, adequate evaluation should be carried out using CS products (not ES products) of mask ROM versions.

2. PIN FUNCTION LIST

2.1 Port Pins (1/2)

Pin Name	I/O	Function	At Reset	Shared by:
P00-P07	I/O	Port 0. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	INTP0-INTP7
P10-P17	Input	Port 1. 8-bit input port.	Input	ANIO-ANI7
P20	I/O	Port 2.	Input	SI1
P21	_	8-bit I/O port.		SO1
P22		Can be set in input or output mode in 1-bit units.		SCK1
P23				STB
P24				BUSY
P25				SI0/SB0/SDA0
P26				SO0/SB1/SDA1
P27				SCK0/SCL
P30	I/O	Port 3.	Input	VM45
P31	-	8-bit I/O port.		TO0
P32		Can be set in input or output mode in 1-bit units.		TI00
P33				TI01
P34	_			TI50
P35	-			TI51
P36				BEEP0
P37	1			BUZ
P40-47	I/O	Port 4. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	-
P50-P57	I/O	Port 5. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P60-P67	I/O	Port 6. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	-
P70	I/O	Port 7.	Input	SI3
P71		8-bit I/O port.		SO3
P72	1	Can be set in input or output mode in 1-bit units.		SCK3
P73	1			-
P74				RXD0
P75	1			TXD0
P76, P77	1			-

2.1 Port Pins (2/2)

Pin Name	I/O	Function	At Reset	Shared by:
P100	I/O	Port 10.	Input	-
P101		3-bit I/O port.		AMIFC
P102		Can be set in input or output mode in 1-bit units.		FMIFC
P120	I/O	Port 12.	Input	TXO
P121		5-bit I/O port.		RX0
P122-P124		Can be set in input or output mode in 1-bit units.		_
P130	Output	Port 13.	Low-level	TO50
P131		8-bit output port.	output	TO51
P132-P137		N-ch open-drain output port (15 V withstand)		_

2.2 Pins Other Than Port Pins (1/2)

Pin Name	I/O	Function		At Reset	Shared by:				
INTP0-INTP7	Input	External maskable interrupt input	whose valid edge	Input	P00-P07				
		(rising edge, falling edge, or both	rising and falling edges)						
		can be specified.							
SI0	Input	Serial data input to serial interfac	e.	Input	P25/SB0/SDA0				
SI1					P20				
SI3			Serial data output from serial interface						
SO0	Output	Serial data output from serial inte	rface.	Input	P26/SB1/SDA1				
SO1					P21				
SO3					P71				
SB0	I/O	Serial data input/output to/from	erial data input/output to/from N-ch open drain I/O						
SB1		serial interface.			P26/SO0/SDA1				
SDA0					P25/SI0/SB0				
SDA1				P26/SO0/SB1					
SCK0	I/O	Serial clock input/output to/from s	erial interface.	Input	P27/SCL				
SCK1					P22				
SCK3					P72				
SCL			N-ch open drain I/O	_	P27/SCK0				
STB	Output	Strobe output for serial interface	automatic transmission/	Input	P23				
		reception.							
BUSY	Input	Busy input for serial interface aut	omatic transmission/	Input	P24				
		reception.							
VW45	Output	V _{DD} = 4.5 V monitor output		Input	P30				
TI00	Input	External count clock input to 16-b	it timer (TM0).	Input	P32				
TI01					P33				
TI50	Input	External count clock input to 8-bit	timer (TM50).	Input	P34				
TI51		External count clock input to 8-bit	timer (TM51).		P35				
TO0	Output	16-bit timer (TM0) output.		Input	P31				
TO50		8-bit timer (TM50) output.		Low-level	P130				
TO51		8-bit timer (TM51) output.		output	P131				
BEEP0	Output	Buzzer output.		Input	P36				
BUZ					P37				

2.2 Pins Other Than Port Pins (2/2)

Pin Name	I/O	Function	At Reset	Shared by:
ANI0-ANI7	Input	Analog input to A/D converter.	Input	P10-P17
EO0, EO1	Output	Error out output from charge pump of PLL frequency synthesizer.	-	_
VCOL	Input	Inputs local oscillation frequency of PLL (in HF and MF modes).	-	_
VCOH	Input	Inputs local oscillation frequency of PLL (in VHF mode).	_	_
AMIFC	Input	Input to AM intermediate frequency counter.	Input	P101
FMIFC	Input	Input to FM intermediate frequency or AM intermediate frequency counter.	Input	P102
RXD0	Input	Serial data input to asynchronous serial interface (UART0).	Input	P74
TXD0	Output	Serial data output from asynchronous serial interface (UART0).	Input	P75
TXO	Output	IEBus controller data output.	Input	P120
RX0	Input	IEBus controller data input.	Input	P121
RESET	Input	System reset input.	_	_
X1	Input	Connection of crystal resonator for system clock oscillation.	_	_
X2	_		_	-
REGOSC	_	Regulator for oscillation circuit. Connect this pin to GND via	_	-
		0.1-μF capacitor.		
REGCPU	_	Regulator for CPU power supply. Connect this pin to GND via $0.1-\mu$ F capacitor.	-	_
Vdd	_	Positive power supply.	_	-
GND0-GND2	_	Ground.	-	-
VDDPORT	_	Port power supply.	-	_
GNDPORT	_	Port ground.	-	-
AVdd	-	A/D converter positive power supply. Keep voltage at this pin same as that at $V_{DD}O$.	_	-
AVss	_	A/D converter ground. Keep voltage at this pin same as that at GND0 through GND2.	_	_
VDDPLLNote	_	PLL positive power supply.	-	-
GNDPLL ^{Note}	-	PLL ground.	-	-
Vpp	_	Pin to apply high voltage at program writing/verifying. Directly connect this pin to GND0, GND1, or GND2 in normal operating mode.	-	_

Note Connect a capacitor of about 1000 pF between the VDDPLL and GNDPLL pins.

2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins

Table 2-1 shows the types of the I/O circuits of the respective pins and the recommended connections of the pins when they are not used.

For the configuration of the I/O circuit of each pin, refer to Figure 2-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P00/INTP0-P07/INTP7	8	1/0	Input: Connect each of them to VDD, VDDPORT, GND0 to GND2, or GNDPORT via resistor. Output: Leave open.
P10/ANI0-P17/ANI7	25	Input	Connect these pins to VDD, VDDPORT, GND0 to GND2 or GNDPORT.
P20/SI1	5-K	I/O	Input: Connect each of them to VDD, VDDPORT, GND0 to
P21/SO1	5		GND2, or GNDPORT via resistor.
P22/SCK1	5-K		Output: Leave open.
P23/STB	5		
P24/BUSY	5-K		
P25/SI0/SB0/SDA0	10-D		
P26/SO0/SB1/SDA1			
P27/SCK0/SCL			
P30/VM45	5		
P31/TO0			
P32/TI00	5-K		
P33/TI01			
P34/TI50			
P35/TI51			
P36/BEEP0	5		
P37/BUZ			
P40-P47			
P50-P57			
P60-P67			
P70/SI3	5-K		
P71/SO3	5		
P72/SCK3	5-K		
P73	5		
P74/RXD0	5-K		
P75/TXD0	5		
P76, P77			
P100			
P101/AMIFC			
P102/FMIFC			
P120/TX0			
P121/RX0	5-K		
P122-P124	5		

Table 2-1. I/O Circuit Type of Each Pin (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P130/TO50	19	Output	Open these pins.
P131/TO51			
P132-P137			
EO0	DTS-EO1		
EO1			
VCOL, VCOH	DTS-AMP2	Input	Disable PLL in software and select pull-down.
REGOSC, REGCPU	_	_	Connect these pins to GND0, GND1, or GND2 via $0.1-\mu F$ capacitor.
RESET	2	Input	_
AVdd	_	_	Connect this pin to VDD or VDDPORT.
AVss			Directly connect these pins to GND0 to GND2, or GNDPORT.
Vpp			

Table 2-1. I/O Circuit Type of Each Pin (2/2)

Figure 2-1. I/O Circuits of Respective Pins (1/2)

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.

Figure 2-1. I/O Circuits of Respective Pins (2/2)

Note This switch is selectable in software only for the VCOL and VCOH pins.

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.

3. MEMORY SIZE SELECT REGISTER (IMS)

The internal memory capacity of the μ PD178F098 can be changed using the memory size select register (IMS). By using this register, the memory of the μ PD178F098 can be mapped in the same manner as a mask ROM model with a different internal memory capacity.

Use an 8-bit memory manipulation instruction to set the IMS.

This register is set to CFH at reset.

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	FFF0H	CFH	R/W

RAM2	RAM1	RAM0		Selects internal high-speed RAM capacity					
1	1	0	1024 b	4 bytes					
Others Settin			Setting	prohibited					
RAM3	RAM2	RAM1	RAM0	Selects internal ROM capacity					
1	1	0	0	48K bytes					
1	1	1	1	60K bytes					
Others				Setting prohibited					

Table 3-1 shows the setting of IMS to perform the same memory mapping as that of a mask ROM model.

Table 3-1. Setting of Memory Size Select Register

Targeted Model	Setting of IMS
μPD178076, 178096	ССН
μPD178078, 178098	CFH

4. INTERNAL EXTENSION RAM SIZE SELECT REGISTER (IXS)

The internal extention RAM capacity of the μ PD178F098 can be changed using the internal extention RAM size select register (IXS). By using this register, the memory of the μ PD178F098 can be mapped in the same manner as a mask ROM model with a different internal extention RAM capacity.

Use an 8-bit memory manipulation instruction to set the IXS.

This register is set to 0CH at reset.

Figure 4-1. Format of Internal Extension RAM Size Select Register (IXS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Selects internal extension RAM capacity
0	1	0	0	0	2048 bytes
0	1	0	1	0	1024 bytes
Others					Setting prohibited

Table 4-1 shows the setting of IXS to perform the same memory mapping as that of a mask ROM model.

Table 4-1. Setting of Internal RAM Size Select Register

Targeted Model	Setting of IXS				
μPD178076, 178096	0AH				
μPD178078, 178098	08H				

5. INTERRUPT FUNCTION

The μ PD178F098 has the following three types and 24 sources of interrupts:

- Non-maskable : 1Note
- Maskable : 23^{Note}
- Software : 1

Interrupt Type	Default Priority ^{Note} 1		Interrupt Source	Internal/	Vector Table	Basic Configuration
	Priority	Name	Trigger	External	Address	Type ^{Note 2}
Non-maskable	-	INTWDT	Overflow of watchdog timer (when watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (when interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTP7			0014H	
	9	INTCSI0	End of transfer by serial interface 0	Internal	0016H	(B)
	10	INTCSI1	End of transfer by serial interface 1		0018H	
	11	INTCSI3	End of transfer by serial interface 3		001AH	
	12	INTTM50	Generation of coincidence signal of 8-bit timer/event counter 50		001CH	
	13	INTTM51	Generation of coincidence signal of 8-bit timer/event counter 51		001EH	
	14	INTSER0	Reception error of serial interface UART0		0020H	
	15	INTSR0	End of reception by serial interface UART0		0022H	
	16	INTST0	End of transmission by serial interface UART0		0024H	
	17	INTBTM0	Generation of coincidence signal of basic timer		0026H	

 Table 5-1.
 Interrupt Sources (1/2)

- **Notes 1.** If two or more maskable interrupts occur at the same time, they are acknowledged or kept pending according to their default priorities. The default priority 0 is the highest, while 22 is the lowest.
 - 2. (A) to (E) under the heading Basic Configuration Type corresponds to (A) to (E) in Figure 5-1.

Note Two types of watchdog interrupt sources (INTWDT), non-maskable and maskable, are available, and either of them can be selected.

Interrupt Type	Default Priority ^{Note} 1	Interrupt Source		Internal/ External	Vector Table	Basic Configuration	
	Попту	Name	Trigger	LAtemai	Address	TypeNote 2	
Maskable	18	INTTM00	Generation of signal indicating coincidence between 16-bit timer counter (TM0) and capture/compare register (CR00) (when CR00 is used as compare register)	Internal	0028H	(B)	
			Detection of input edge of TI00/P32 pin (when CR00 is used as capture register)	External		(D)	
	19	INTTM01	Generation of signal indicating coincidence between 16-bit timer counter (TM0) and capture/compare register (CR01) (when CR01 is used as compare register)	Internal	002AH	(B)	
			Detection of input edge of TI01/P33 pin (when CR01 is used as capture register)	External		(D)	
	20	INTIE1	IEBus0 data access request	Internal	002CH	(B)	
	21	INTIE2	IEBus0 communication error and start/end of communication		002EH		
	22	INTAD	End of conversion by A/D converter AD1		0030H	(B)	
Software	-	BRK	Execution of BRK instruction	-	003EH	(E)	

Table 5-1. Interrupt Sources (2/2)

Notes 1. If two or more maskable interrupts occur at the same time, they are acknowledged or kept pending according to their default priorities. The default priority 0 is the highest, while 22 is the lowest.

2. (A) to (E) under the heading Basic Configuration Type corresponds to (A) to (E) in Figure 5-1.

Figure 5-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0 through INTP7)

Figure 5-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupts (INTTM00, INTTM01)

(E) Software interrupt

Remark IF : Interrupt request flag

- IE : Interrupt enable flag
- ISP: In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag

*

6. FLASH MEMORY PROGRAMMING

The program memory provided in the μ PD178F098 is flash memory.

The flash memory can be written on-board, i.e., with the μ PD178F098 mounted on the target system.

To do so, connect a dedicated flash writer (Flashpro III (Part number FL-PR3, PG-FP3)) to the host machine and target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting Communication Mode

The flash memory is written by using Flashpro III and by means of serial communication. Select a communication mode from those listed in Table 6-1. To select a communication mode, the format shown in Figure 6-1 is used. Each communication mode is selected depending on the number of VPP pulses shown in Table 6-1.

Communication Mode	Number of Channels	Pins Used	Number of VPP Pulses
3-wire serial I/O (SIO3)	1	SI3/P70	0
		SO3/P71	
		SCK3/P72	
UART0	1	RXD0/P74	8
		TXD0/P75	

Table 6-1. Communication Modes

Caution Be sure to select a communication mode by the number of VPP pulses shown in Table 6-1.

Figure 6-1. Communication Mode Selection Format

6.2 Flash Memory Programming Function

An operation such as writing the flash memory is performed when a command or data is transmitted/received in the selected communication mode. The major flash memory programming functions are listed in Table 6-2.

Table 6-2. Major Flash Memory Programming Functions

Function	Description
Batch erase	Erases all memory contents.
Batch blank check	Checks erased status of entire memory.
Data write	Writes data to flash memory starting from write start address and based on number of data (bytes) to be written).
Batch verify	Compares all contents of memory with input data.

6.3 Connecting Flashpro III

Connection with Flashpro III differs depending on the communication mode (3-wire serial I/O or UARTO). Figures 6-2 and 6-3 show the connection in the respective modes.

Figure 6-2. Connection of Flashpro III in 3-Wire Serial I/O Mode

★ 7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Conditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +6.0	V
	VDDPORT				-0.3 to VDD + 0.3 ^{Note 1}	V
	AVDD				-0.3 to VDD + 0.3 ^{Note 1}	V
	VDDPLL				-0.3 to VDD + 0.3 ^{Note 1}	V
	Vpp				-0.3 to +10.5	V
Input voltage	Vi				-0.3 to VDD + 0.3	V
Output voltage	Vo	Excluding P130	to P137		-0.3 to VDD + 0.3	V
Output breakdown	VBDS	P130-P137	N-ch open drain		16	V
voltage						
Analog input voltage	Van	P10-P17	Analog input pin		-0.3 to VDD + 0.3	V
High-level output	Іон	1 pin			-8	mA
current		Total of P00-P0	1, P20-P27, P50-P57,	–15	mA	
		Total of P02-P07	7, P30-P37, P40-P47,	-15	mA	
		P74-P77, and P	120-P124			
		Total of P100-P	102	-10	mA	
Low-level output	IOL Note 2	1 pin		Peak value	16	mA
current				r.m.s	8	mA
		Total of P00-P0	1, P20-P27, P50-P57,	Peak value	30	mA
		and P70-P73		r.m.s	15	mA
		Total of P02-P0	7, P30-P37, P40-P47,	Peak value	30	mA
		P60-P67, P74-P	77, P120-P124, and	r.m.s	15	mA
		P130-P137				
		Total of P100-10)2	Peak value	20	mA
				r.m.s	10	mA
Operating temperature	TA	During normal op	peration		-40 to +85	°C
		During flash mer	mory programming	10 to 40	°C	
Storage temperature	Tstg				-55 to +125	°C

Notes 1. Keep the voltage at VDDPORT, AVDD, and VDDPLL same as that at the VDD pin.

2. Calculate the r.m.s as follows: $[r.m.s] = [Peak value] \times \sqrt{Duty}$

- Caution If the rated value of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings, therefore, are the values exceeding which the product may be physically damaged. Be sure to use the product with these ratings never being exceeded.
- **Remark** Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Recommended Supply Voltage Ranges (T_A = -40 to $+85^{\circ}$ C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd1			5.0	5.5	V
	Vdd2	When CPU is operating and PLL is stopped	3.5	5.0	5.5	V
Data retention voltage	Vddr	When crystal oscillation stops	2.3		5.5	V
Output breakdown	VBDS	P130-P137 (N-ch open drain)			15	V
voltage						

DC Characteristics (T_A = -40 to +85°C, V_DD = 3.5 to 5.5 V)

Parameter	Symbol	Test Cond	ditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH1	P10-P17, P21, P23, P30, P3 P50-P57, P60-P67, P71, P7 P120, P122-P124		0.7 Vdd		Vdd	V
	V _{IH2}	P00-P07, P20, P22, P24-P2 P74, P121, RESET	7, P32-P35, P70, P72,	0.8 Vdd		Vdd	V
Low-level input voltage	VIL1	P10-P17, P21, P23, P30, P3 P50-P57, P60-P67, P71, P7 P120, P122-P124		0		0.3 Vdd	V
	VIL2	P00-P07, P20, P22, P24-P2 P74, P121, RESET	0		0.2 Vdd	V	
High-level output voltage	Vон1	P00-P07, P20-P24, P30-P37, P40-P47, P50-P57, P60-P67,	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh = -1 mA	Vdd - 1.0			V
		P70-P77, P100-P102, P120-P124	$3.5 V \le V_{DD} < 4.5 V,$ Іон = -100 μ А	V _{DD} - 0.5			V
	Vон2	EO0, EO1	V _{DD} = 4.5 to 5.5 V, Іон = -3 mA	Vdd - 1.0			V
Low-level output voltage	Voh1	P00-P07, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ Iol = 1 mA			1.0	V
		P70-P77, P100-P102, P120-P124, P130-P137,	$3.5 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V},$ Iol = 100 μ A			0.5	V
	Vol2	EO0, EO1	V _{DD} = 4.5 to 5.5 V, Io∟ = 3 mA			1.0	V
High-level input leakage current	Шн	P00-P07, P10-P17, P20-P24, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P100-P102, P120-P124, RESET	Vi = Vdd			3	μΑ

Remark Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-level input leakage current	ILIL	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P100-P102, P120-P124, RESET	V1 = 0 V			-3	μΑ
Output off	ILOH1	P130-P137	Vo = 15 V			-3	μA
leakage current	ILOL1	P130-P137	Vo = 0 V			3	μΑ
	Iloh2	P25-P27 (at N-ch open drain I/O)	Vo = Vdd			-3	μA
	ILOL2	P25-P27 (at N-ch open drain I/O)	Vo = 0 V			3	μA
	Ігонз	EO0, EO1	Vo = Vdd			-3	μΑ
	ILOL3	EO0, EO1	Vo = 0 V			3	μΑ
Supply current ^{Note}	IDD1	When CPU is operating and PLL is stopped.	fx = 4.5 MHz		5.0	18	mA
	Idd2	Sine wave input to X1 pin VI = VDD	fx = 6.3 MHz		7.0	20	mA
	Іддз	In HALT mode with PLL stopped.	fx = 4.5 MHz		0.3	0.8	mA
	IDD4	Sine wave input to X1 pin VI = VDD	fx = 6.3 MHz		0.4	1.0	mA
Data retention	VDDR1	When crystal resonator is o	scillating	3.5		5.5	V
voltage	Vddr2	When crystal oscillation is stopped	Power-failure detection function	2.2			V
	Vddr3		Data memory retained	2.0			V
Data retention current	IDDR1	When crystal oscillation is stopped	$T_{A} = 25^{\circ}C,$ $V_{DD} = 5 V$		2.0	4.0	μΑ
	IDDR2				2.0	20	μA

DC Characteristics (TA = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

Note Excluding AVDD current and VDDPLL current.

Remarks 1. fx: System clock oscillation frequency

2. Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Reference Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	IDD5	When CPU and PLL are operating. Sine wave input to VCOH pin		8		mA
		At fin = 160 MHz, Vin = 0.15 VP-P				

AC Characteristics

(1) Basic operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	At $f_x = 6.3 \text{ MHz}$	0.32		5.08	μs
(minimum instruction execution time)		At $f_x = 4.5 \text{ MHz}^{Note 1}$	0.44		7.11	μs
TI00, TI01 input high-/low-level widths	tтiнo, t⊤iLo		4/fsam ^{Note 2}			s
TI50, TI51 input frequency	ft15				2	MHz
TI50, TI51 input high-/low-level widths	t⊤iн₅, t⊤i∟s		200			ns
Interrupt input high-/low-level widths	tinth, tintl	INTP0-INTP7	1			μs
RESET pin low-level width	trsl		10			μs

Notes 1. Only when products not using IEBus are supported.

fsam = fx/2, fx/4, fx/64 selectable by bits 0 and 1 (PRM00 and PRM01) of the prescaler mode register 0 (PRM0). However, fsam = fx/8 when the valid edge of TI00 is selected as the count clock.

(2) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

(a) Serial interface 0

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү1	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high-/low-level width	t кн1,	V _{DD} = 4.5 to 5.5 V	tксү1/2 − 50			ns
	tĸ∟1		tксү1/2 – 100			ns
SI0 setup time (to SCK0↑)	tsik1	V _{DD} = 4.5 to 5.5 V	100			ns
			150			ns
SI0 hold time (from SCK0↑)	tksi1		400			ns
SO0 output delay time from $\overline{\text{SCK0}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

(i) 3-wire serial I/O mode (SCK0 ... internal clock output)

Note C is the load capacitance of $\overline{SCK0}$ and SO0 output line.

(ii) 3-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү2	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high-/low-level width	t кн2,	V _{DD} = 4.5 to 5.5 V	400			ns
	tĸ∟2		800			ns
SI0 setup time (to SCK0↑)	tsik2		100			ns
SI0 hold time (from SCK0↑)	tĸsi2		400			ns
SO0 output delay time from $\overline{\text{SCK0}}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns
SCK0 at rising or falling edge time	tr2, tr2				1000	ns

Note C is the load capacitance of SO0 output line.

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	V _{DD} = 4.5 to 5.	.5 V	800			ns
				3200			ns
SCK0 high-/low-level width	tкнз,	V _{DD} = 4.5 to 5.	.5 V	tксүз/2 – 50			ns
	tкLз			tксүз/2 – 150			ns
SB0, SB1 setup time (to SCK0↑)	tsiкз	V _{DD} = 4.5 to 5.	.5 V	100			ns
				300			ns
SB0, SB1 hold time (from SCK0↑)	tหรเช			tксүз/2			ns
SB0, SB1 output delay time from	tкsoз	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		250	ns
SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsвl			tксүз			ns

(iii) SBI mode (SCK0 ... internal clock output)

Note R and C are the load resistance and load capacitance of $\overline{SCK0}$, SB0 and SB1 output line.

(iv) SBI mode (SCK0 ... external clock input)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	V _{DD} = 4.5 to 5.	5 V	800			ns
				3200			ns
SCK0 high-/low-level width	t кн4,	$V_{DD} = 4.5$ to 5.5 V		400			ns
	tĸ∟4			1600			ns
SB0, SB1 setup time (to SCK0↑)	tsik4	V _{DD} = 4.5 to 5.5 V		100			ns
				300			ns
SB0, SB1 hold time (from $\overline{\text{SCK0}}$)	tksi4			tксү4/2			ns
SB0, SB1 output delay time from	tkso4	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		250	ns
SCК0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксү4			ns
SCK0↓ from SB0, SB1↓	tsвк			tксү4			ns
SB0, SB1 high-level width	tsвн			tксү4			ns
SB0, SB1 low-level width	t SBL			tксү4			ns
SCK0 at rising or falling edge time	tr4, tr4					1000	ns

Note R and C are the load resistance and load capacitance of SB0 and SB1 output line.

(v) 2-wire serial I/O mode (SCK0 ... internal clock output)

Parameter	Symbol	Test (MIN.	TYP.	MAX.	Unit	
SCK0 cycle time	tkcy5	R = 1 kΩ		1600			ns
SCK0 high-level width	tкн5	C = 100 pF ^{Note}		tксү5/2 – 160			ns
SCK0 low-level width	tĸl5		V _{DD} = 4.5 to 5.5 V	tксү5/2 – 50			ns
				tксү5/2 – 100			ns
SB0, SB1 setup time (to SCK0↑)	tsik5		V _{DD} = 4.5 to 5.5 V	300			ns
				350			ns
SB0, SB1 hold time (from $\overline{SCK0}$)	tksi5			600			ns
$\frac{\text{SB0, SB1 output delay time from}}{\text{SCK0}}\downarrow$	tkso5			0		300	ns

Note R and C are the load resistance and load capacitance of SCK0, SB0 and SB1 output line.

Parameter	Symbol	Test	MIN.	TYP.	MAX.	Unit	
SCK0 cycle time	t ксү6			1600			ns
SCK0 high-level width	tкнө			650			ns
SCK0 low-level width	tĸl6			800			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, SB1 hold time (from $\overline{SCK0}^{\uparrow}$)	tksi6			tксү6/2			ns
SB0, SB1 output delay time from	tkso6	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		300	ns
<u>SCK0</u> ↓		C = 100 pF ^{Note}		0		500	ns
SCK0 at rising or falling edge time	tre, tre					1000	ns

Note R and C are the load resistance and load capacitance of SB0 and SB1 output line.

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү7	R = 1 kΩ		10			μs
SCL high-level width	tкн7	C = 100 pF ^{Note}		tксү7 – 160			ns
SCL low-level width	tĸ∟7			tксү7 – 50			ns
SDA0, SDA1 setup time (to SCL↑)	tsık7			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi7			0			ns
SDA0, SDA1 output delay time	tkso7		V _{DD} = 4.5 to 5.5 V	0		300	ns
(from SCL↓)				0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк	1		400			ns
SDA0, SDA1 high-level width	tsвн			500			ns

(vii) I²C Bus mode (SCL ... internal clock output)

Note R and C are the load resistance and load capacitance of SCL, SDA0 and SDA1 output line.

(viii) I²C Bus mode (SCL ... external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү8			1000			ns
SCL high-/low-level width	tkh8, tkl8			400			ns
SDA0, SDA1 setup time (to SCL↑)	tsik8			200			ns
SDA0, SDA1 hold time (from SCL↓)	tหรเช			0			ns
SDA0, SDA1 output delay time	tkso8	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		300	ns
from SCL↓		C = 100 pF ^{Note}		0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns
SCL at rising or falling edge time	trs, trs					1000	ns

Note R and C are the load resistance and load capacitance of SDA0 and SDA1 output line.

(b) Serial interface 1

(i) 3-wire serial I/O mode (SCK1 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксүэ		800			ns
SCK1 high/low-level width	tкн9, tк∟9		tксү9/2 — 50			ns
SI1 setup time (to SCK1↑)	tsik9		100			ns
SI1 hold time (from SCK1↑)	tksi9		400			ns
SO1 output delay time (from $\overline{\text{SCK1}}\downarrow$)	tks09	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of $\overline{SCK1}$ and SO1 output line.

(ii) 3-wire serial I/O mode (SCK1 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy10		800			ns
SCK1 high/low-level width	t кн10,		400			ns
	t KL10					
SI1 setup time (to SCK1↑)	tsik10		100			ns
SI1 hold time (from SCK1↑)	t KSI10		400			ns
SO1 output delay time (from $\overline{\text{SCK1}}\downarrow$)	tkso10	C = 100 pF ^{Note}			300	ns
SCK1 at rising or falling edge time	t R10, t F10				1000	ns

Note C is the load capacitance of SO1 output line.

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү11		800			ns
SCK1 high/low-level width	tкн11, tк∟11		tkcy11/2 - 50			ns
SI1 setup time (to SCK1↑)	tsik11		100			ns
SI1 hold time (from SCK1↑)	tksi11		400			ns
SO1 output delay time (from $\overline{\text{SCK1}}\downarrow$)	tkso11	C = 100 pF ^{Note}			300	ns
STB↑ from SCK1↑	tsbd		tксү11/2 – 100		tkcy11/2 + 100	ns
Strobe signal high-level width	tsвw		tксү11/2 — 30		tксү11/2 + 30	ns
Busy signal setup time (to busy signal detection timing)	tBYS		100			ns
Busy signal hold time (from busy signal detection timing)	tвүн		100			ns
$\overline{\text{SCK1}}\downarrow$ from busy inactive	tsps		200			ns

(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... internal clock output)

Note C is the load capacitance of SO1 output line.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t KCY12		800			ns
SCK1 high/low-level width	t кн12,		400			ns
	t KL12					
SI1 setup time (to SCK1↑)	tsik12		100			ns
SI1 hold time (from SCK1↑)	tksi12		400			ns
SO1 output delay time (from $\overline{\text{SCK1}}\downarrow$)	tks012	C = 100 pF ^{Note}			300	ns
SCK1 at rising or falling edge time	t R12, t F12				1000	ns

Note C is the load capacitance of SO1 output line.

(c) Serial interface 3

(i) 3-wire serial I/O mode (SCK3 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t ксү13		800			ns
SCK3 high/low-level width	tкн1з, tк∟1з		tксү13/2 — 50			ns
SI3 setup time (to SCK3↑)	tsik13		100			ns
SI3 hold time (from SCK3↑)	t KSI13		400			ns
SO3 output delay time (from $\overline{\text{SCK3}}\downarrow$)	tkso13	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of SCK3 and SO3 output line.

(ii) 3-wire serial I/O mode (SCK3 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t ксү14		800			ns
SCK3 high/low-level width	t кн14,		400			ns
	t KL14					
SI3 setup time (to SCK3↑)	tsik14		100			ns
SI3 hold time (from SCK3↑)	tksi14		400			ns
SO3 output delay time (from $\overline{\text{SCK3}}\downarrow$)	tkso14	C = 100 pF ^{Note}			300	ns
SCK3 at rising or falling edge time	t R14, t F14				1000	ns

Note C is the load capacitance of SO3 output line.

(d) Serial interface UART0 (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					38400	bps
AC Timing Test Point (Excluding X1 Input)

TI Timing

Interrupt Input Timing

RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1, 2, 9, 10, 13, 14 n = 2, 10, 14

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

2-wire serial I/O mode:

I²C bus mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

IEBus Controller Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

Parameter S	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IEBus system clock frequency	fs	Fixed to mode 1		6.3 ^{Note}		MHz

Note Although the system clock frequency is 6.0 MHz in the IEBus standard, in these products, normal operation is guaranteed at 6.3 MHz.

Remark 6.0 MHz and 6.3 MHz cannot both be used as the IEBus system clock frequency.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total conversion		V _{DD} = 4.5 to 5.5 V			±1.0	%FSR
error ^{Notes} 1, 2					±1.4	%FSR
Conversion time	t CONV		15.2		45.7	μs
Analog input voltage	VIAN		0		Vdd	V

A/D Converter Characteristics (T_A = -40 to +85°C, V_{DD} = AV_{DD} = 3.5 to 5.5 V)

Notes 1. Excluding quantization error (±0.2%FSR)

2. This value is indicated as a ratio to the full-scall value.

PLL Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating	fin1	VCOL pin, MF mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	0.5		3.0	MHz
frequency	fin2	VCOL pin, HF mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	10		40	MHz
	fіnз	VCOH pin, VHF mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	60		130	MHz
	fin4	VCOH pin, VHF mode, sine wave input, V_{IN} = 0.3 V_{P-P}	40		160	MHz

Remark The above values are the result of NEC's evaluation of the device. If the device is likely to be affected by noise in your application, it is recommended to use the device at a voltage higher than the above values.

IFC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin5	AMIFC pin, AMIF count mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	0.4		0.5	MHz
	fin6	FMIFC pin, FMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	10		11	MHz
	fin7	FMIFC pin, AMIF count mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	0.4		0.5	MHz

Remark The above values are the result of NEC's evaluation of the device. If the device is likely to be affected by noise in your application, it is recommended to use the device at a voltage higher than the above values.

Flash Memory Programming Characteristics (V_{DD} = 3.5 to 5.5 V, T_A = 10 to 40°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Write current (VDD pin) ^{Note}	todw	When $V_{PP} = V_{PP1}$, fx = 6.3 MHz			23	mA
Write current (VPP pin)Note	IPPW	When $V_{PP} = V_{PP1}$, fx = 6.3 MHz			20	mA
Delete current (VDD pin)Note	IDDE	When $V_{PP} = V_{PP1}$, fx = 6.3 MHz			23	mA
Delete current (VPP pin)Note	IPPE	When $V_{PP} = V_{PP1}$			100	mA
Unit delete time	ter		0.5	1	1	S
Total delete time	tera				20	s
Number of overwrite	CWRT	Delete and write are counted as one cycle			20	times
VPP power supply voltage	V _{PP0}	In normal mode	0		0.2 Vdd	V
	Vpp1	At flash memory programming	9.7	10.0	10.3	V

(1) Write/delete characteristics

Note AVDD current and Port current (current flowing to internal pull-up resistor) are not included.

Remark fx: System clock oscillation frequency

(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP setup time	t PSRON	VPP high voltage	1.0			μs
V _{PP} ↑ setup time from V _{DD} ↑	t DRPSR	VPP high voltage	1.0			μs
$\overline{\text{RESET}} \uparrow$ setup time from $V_{\text{PP}} \uparrow$	t PSRRF	VPP high voltage	1.0			μs
V _{PP} count start time from RESET↑	t RFCF		1.0			μs
Count execution time	t COUNT				2.0	ms
VPP counter high-level width	tсн		8.0			μs
VPP counter low-level width	tc∟		8.0			μs
VPP counter noise elimination width	tNFW			40		ns

Flash Write Mode Setting Timing

8. PACKAGE DRAWING

* 100-PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	0.8
G	0.6
Н	0.30±0.10
I	0.15
J	0.65 (T.P.)
ĸ	1.8±0.2
L	0.8±0.2
М	$0.15\substack{+0.10 \\ -0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
P	100GF-65-3BA1-4

*

9. RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.

For details of the recommended soldering conditions, refer to information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, consult NEC.

Table 9-1. Soldering Conditions for Surface-Mount Type

 μ PD178F098GF-3BA: 100-pin plastic QFP (14 \times 20)

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec max. (210°C min.), Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec max. (200°C min.), Number of times: 3 max.	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec max., Number of times: 1, Preheating temperature: 120°C max., (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec max (per device side)	-

Caution Do not use two or more soldering methods in combination (except partial heating).

★ APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for development of systems using the μ PD178078 and 178098 subseries.

Language processor software

RA78K/0 ^{Notes 1, 2, 3}	Assembler package common to 78K/0 series
CC78K/0 ^{Notes 1, 2, 3}	C compiler package common to 78K/0 series
DF178098Notes 1, 2, 3	Device file for μ PD178078 subseries and μ PD178098 subseries
CC78K0-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0 series

Flash memory writing tools

Fashpro III	Dedicated flash programmer
(Part number: FL-PR3 ^{Note 4} , PG-FL3)	
FA-100GF-3BA ^{Note 4}	Flash programmer adapter

Debugging tools

• When in-circuit emulator IE-78K0-NS is used

IE-78K0-NS	In-circuit emulator common to 78K/0 series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board for enhancing and expanding the IE-78K0-NS function
IE-70000-98-IF-C	Interface adapter necessary when PC-9800 series (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable necessary when a notebook-type PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter necessary when a IBM PC/AT TM compatible machine is used as host machine (ISA bus supported)
IE-70000-PCI-IF	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-178098-NS-EM1	Emulation board to emulate μ PD178078 and 178098 subseries
NP-100GF ^{Note 4}	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket mounted on board of target system created for 100-pin plastic QFP (GF-3BA type)
SM78K0 ^{Notes 1, 2}	System simulator common to 78K/0 series
ID78K0-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0 series
DF178098 ^{Notes} 1, 2, 3	Device file for μ PD178078 subseries and μ PD178098 subseries

Notes 1. PC-9800 series (Japanese Windows[™]) based

- 2. IBM PC/AT compatible machine (Japanese/English windows) based
- HP9000 series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™], Solaris[™]) based, NEWS[™] (NEWS-OS[™]) based
- 4. Products of Naito Densei Machida Mfg. Co., Ltd. (Tel: 044-822-3813).

Remark Use the RA78K0, CC78K0, and SM78K0 in combination with the DF178098.

• When in-circuit emulator IE-78001-R-A is used

IE-78001-R-A	In-circuit emulator common to 78K/0 series
IE-70000-98-IF-C	Interface adapter necessary when PC-9800 series (except notebook type) is used as host machine
	(C bus supported)
IE-70000-PC-IF-C	Interface adapter necessary when IBM PC/AT compatible machine is used as host machine (ISA
	bus supported)
IE-70000-PCI-IF	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when EWS is used as host machine
IE-178098-NS-EM1	Emulation board to emulate μ PD178078 and 178098 subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-178098-NS-EM1 on IE-78001-R-A
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket mounted on board of target system created for 100-pin plastic QFP (GF-3BA type)
SM78K0Notes 1, 2	System simulator common to 78K/0 series
ID78K0 ^{Notes 1, 2}	Integrated debugger common to 78K/0 series
DF178098Notes 1, 2, 3	Device file for μ PD178078 subseries and μ PD178098 subseries

Real-time OS

RX78K/0 ^{Notes 1, 2, 3}	Real-time OS for 78K/0 series
MX78K0 ^{Notes} 1, 2, 3	OS for 78K/0 series

Notes 1. PC-9800 series (Japanese Windows) based

- 2. IBM PC/AT compatible machine (Japanese/English windows) based
- HP9000 series 700 (HP-UX) based, SPARCstation (SunOS, Solaris) based, NEWS (NEWS-OS) based

Remark Use the SM78K0 in combination with the DF178098.

***** APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Documents

Title		Document No.	
		Japanese	English
μPD178076, 178078, 178096, 178098 Data Sheet		U12885J	U12885E
μPD178F098 Data Sheet		U12920J	This document
μPD178078, 178098 Subseries User's Manual		U12790J	U12790E
78K/0 Series User's Manual - Instruction		U12326J	U12326E
78K/0 Series Application Note	Basics (I)	U12704J	U12704E
78K/0, 78K/0S Series Flash Memory Write Application Note		U14458J	U14458E

Development Tool Documents (User's Manual)

Title		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly	U11789J	U11789E
	Language		
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
IE-78001-R-A		U14142J	To be prepared
IE-78K0-NS		U13731J	U13731E
IE-178098-NS-EM1		U14013J	U14013E
EP-78064		EEU-934	EEU-1469
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	—
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
ID78K0-NS Integrated Debugger Windows Based	Reference	U12900J	U12900E
	Operation	U14379J	To be prepared

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

Related Documents for Embedded Software (User's Manual)

Title		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Fundamental	U11537J	U11537E
	Installation	U11536J	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257J	U12257E

Other Documents

Title	Document No.	
litte	Japanese	English
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Guides on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Device Quality/Reliability Handbook	C12769J	_
Microcomputer Product Series Guide	U11416J	_

Caution The contents of the above documents are subject to change without notice. Ensure that the latest versions are used in design work, etc.

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782

Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377

Fax: 02-2719-2377

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

• The information in this document is current as of June, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).