MOS INTEGRATED CIRCUIT μ PD17P108

4 BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P108 is a one-time PROM version of the μ PD17108, in which the internal masked ROM of the μ PD17108 is replaced with a one-time PROM that can be written to just once.

Since user programs can be written to the PROM, this microcontroller is suited for program evaluation and smalllot production of the μ PD17108, or for program evaluation of the μ PD17108L.

When reading this document, refer to the publications on the μ PD17108.

FEATURES

NEC

- 17K architecture : General registers
- Pin compatible with the µPD17108 (except for PROM programming function)
- Internal one-time PROM : 1K byte (512 × 16 bits)
- Instruction execution time : 8 μs (at fcc = 1 MHz, RC oscillation^{Note})
- Supply voltage : $V_{DD} = 2.5$ to 6.0 V (fcc = 50 kHz to 250 kHz)
 - $V_{DD} = 4.5$ to 6.0 V (fcc = 50 kHz to 1 MHz)

Note The capacitor for RC oscillator is contained in the μ PD17P108.

APPLICATIONS

- Controlling electric appliances or toys
- Implementing circuitry consisting of general-purpose logic ICs, using a single chip

ORDERING INFORMATION

Part number	Package
μΡD17Ρ108CS	22-pin plastic shrink DIP (300 mil)
μΡD17Ρ108GS	24-pin plastic SOP (300 mil)

Each device has a different capacity of a built-in capacitor for system clock oscillation of the μ PD17P108. This causes the frequency deviation within about 30% even though the connected resistors have the same value. Use the μ PD17P104 (ceramic based oscillation) when the deviation is a critical problem.

The information in this document is subject to change without notice.

PIN CONFIGURATION (TOP VIEW)

22-pin plastic shrink DIP

(1) Normal operation mode

(2) PROM programming mode

- Caution The parentheses above indicate the level of the pins not used in PROM programming mode.
 - L: Connect each pin to ground through a pull-down resistor.

24-pin plastic SOP

(1) Normal operation mode

(2) PROM programming mode

- Caution The parentheses above indicate the level of the pins not used in PROM programming mode.
 - L: Connect each pin to ground through a pull-down resistor.

BLOCK DIAGRAM

Remark Pin names enclosed in parentheses are used in PROM programming mode.

 \star

 \star

CONTENTS

1.	PINS	5
	1.1 PIN FUNCTIONS	5
	1.2 EQUIVALENT INPUT/OUTPUT CIRCUITS	6
	1.3 HANDLING UNUSED PINS	8
	1.4 NOTES ON USE OF THE RESET PIN (FOR NORMAL OPERATION MODE ONLY)	8
2.	DIFFERENCES BETWEEN THE μ PD17P108, μ PD17108, AND μ PD17108L	9
3.	WRITING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)	10
	3.1 PROGRAM MEMORY WRITE/VERIFY MODES	10
	3.2 WRITING TO PROGRAM MEMORY	11
	3.3 READING PROGRAM MEMORY	12
4.	ELECTRICAL CHARACTERISTICS	13
5.	CHARACTERISTIC CURVES (FOR REFERENCE)	19
6.	PACKAGE DRAWINGS	21
7.	RECOMMENDED SOLDERING CONDITIONS	23
AF	PPENDIX A TINY MICROCONTROLLER FAMILY	24
AF	PPENDIX B DEVELOPMENT TOOLS	25

1. PINS

1.1 PIN FUNCTIONS

Port pins

Pin ^{Note}	I/O	Function	PROM programming mode	Reset
P0A0 - P0A3	I/O	CMOS (push-pull) 4-bit I/O port (port 0A)	Must be pulled down	High impedance (input mode)
P0B0/RLSHALT/(MD0)	I/O	For releasing HALT mode	Mode selection pin	High impedance
P0B1/RLSstop/(MD1)		For releasing STOP mode	(MD ₀ - MD ₂)	(input mode)
P0B2/(MD2)		 N-ch open-drain 4-bit I/O port (port 0B) 		
P0B ₃		Withstand voltage of 9 V	Must be pulled down	
P0C ₀ /(D ₄) - P0C ₃ /(D ₇)	I/O	CMOS (push-pull) 4-bit I/O port (port 0C)	8-bit data I/O pin (D4 - D7)	High impedance (input mode)
P0D0/(D0) - P0D3/(D3)		CMOS (push-pull) 4-bit I/O port (port 0D)	8-bit data I/O pin (D₀ - D₃)	High impedance (input mode)

Non-port pins

Pin ^{Note}	I/O	Function	PROM programming mode
RESET/(VPP)	Input	System reset input pin	+12.5 V is applied to this pin (V_{PP}).
Vdd	-	Power supply pin	Power supply pin (V _{DD}). +6 V is applied to this pin.
GND	_	GND pin	GND pin
OSC1/(CLK)	-	Pins for system clock generation	Program memory address update (CLK)
OSC ₀ /(MD ₃)	_		Mode selection pin (MD ₃)
NC	-	This pin is not internally connected.	·

I/O: Input/output

Note Pin names enclosed in parentheses are used in PROM programming mode.

1.2 EQUIVALENT INPUT/OUTPUT CIRCUITS

Below are simplified diagrams of the equivalent input/output circuits.

(1) P0A, P0C, and P0D

(2) P0B0 and P0B1

(3) P0B₂ and P0B₃

(4) RESET

1.3 HANDLING UNUSED PINS

In normal operation mode, connect unused pins as follows:

×

Table 1-1 Handling Unused Pins

	Pin		Recommended conditions and handling		
			Internal	External	
Port	t Input P0A, P0B, P0C, P0D mode		_	Connect to V _{DD} or ground through resistors for each pin. ^{Note}	
	Output mode P0A, P0C, P0D (CMOS ports)		-	Leave open.	
		P0B (N-ch open-drain port)	Outputs low level.	Leave open.	

Note When a pin is pulled up to Vbb (connected to Vbb through a resistor) or pulled down to ground (connected to ground through a resistor) outside the chip, take the driving capacity and maximum current consumption of a port into consideration. When using high-resistance pull-up or pull-down resistors, apply appropriate countermeasures to ensure that noise is not attracted by the resistors. Although the optimum pull-up or pull-down resistor varies with the application circuit, in general, a resistor of 10 to 100 kilohms is suitable.

Caution To fix the output level of a pin, it is recommended that it should be specified repeatedly within a loop in a program.

1.4 NOTES ON USE OF THE RESET PIN (FOR NORMAL OPERATION MODE ONLY)

The RESET pin has the test mode selecting function for testing the internal operation of the μ PD17P108 (IC test), besides the functions shown in **Section 1.1**.

Applying a voltage exceeding V_{DD} to the \overrightarrow{RESET} pin causes the μ PD17P108 to enter the test mode. When noise exceeding V_{DD} comes in during normal operation, the device is switched to the test mode.

For example, if the wiring from the RESET pin is too long, noise may be induced on the wiring, causing this mode switching.

When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If noise yet arises, use an external part to suppress it as shown below.

• Connect a diode with low VF between the pin • Connect a capacitor between the pin and VDD. and VDD.

2. DIFFERENCES BETWEEN THE µPD17P108, µPD17108, AND µPD17108L

The μ PD17P108 is a one-time PROM version of the μ PD17108, in which the internal masked ROM is replaced with a one-time PROM.

Table 2-1 lists the differences between the μ PD17P108, μ PD17108, and μ PD17108L.

The μ PD17P108 has the same CPU functions and internal peripheral hardwares as those of μ PD17108 and μ PD17108L except for its program memory, mask option, oscillation settling time, and supply voltage range.

Part of electrical characteristics is also different between these products. For details of the electrical characteristics, refer to the data sheet of each product.

Item	μPD17P108	μPD17108	μPD17108L	
ROM	One-time PROM	Masked ROM		
	512×16 bits (0000H - 01F	FH)		
Internal pull-up resistors of P0B₀ to P0B₃ pins	Not provided Mask option			
Internal pull-up resistors of the RESET pin	•			
VPP and operation mode selection pins	Provided	Not provided		
Oscillation settling time	16/fcc	8/fcc		
Supply voltage	V _{DD} = 2.5 to 6.0 V (at fcc = V _{DD} = 4.5 to 6.0 V (at fcc =		V _{DD} = 1.5 to 3.6 V (at fcc = 50 kHz to 250 kHz)	
Quality grade	Standard	 Standard (μPD17108) 	• Standard (µPD17108L)	
Electrical characteristics	Partially differs between these products. Refer to the data sheet of each product for details.			

Table 2-1 Differences between the µPD17P108, µPD17108, and µPD17108L

- Cautions 1. Although a PROM product is highly compatible with a masked ROM product in respect of functions, they differ in internal ROM circuits and part of electrical characteristics. Before changing the PROM product to the masked ROM product in an application system, evaluate the system carefully using the masked ROM product.
 - 2. When the supply voltage and the resistance of a resistor mounted externally are the same, the oscillation frequency of the μ PD17P108 is about 10% lower than that of the μ PD17108 or μ PD17108L. Therefore, when the μ PD17108 or μ PD17108L is used instead of the μ PD17P108, change the resistor externally mounted appropriately.

3. WRITING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The μ PD17P108's internal program memory consists of a 512 \times 16 bit one-time PROM.

Writing to the one-time PROM or verifying the contents of the PROM is accomplished using the pins shown in Table 3-1. Note that address inputs are not used; instead, the address is updated using the clock input from the CLK pin.

Pin	Function
Vpp	Voltage (+12.5 V) is applied to this pin when writing to program memory or verifying its contents.
Vdd	Power supply pin. +6 V is applied to this pin when writing to program memory or verifying its contents.
RESET	System reset input pin. Apply the specific signal to this pin to initialize the conditions of the microcontroller before switching to the program memory write/verify mode.
CLK	Input pin for address update clocks used when writing to program memory or verifying its contents. Input of four pulses to this pin updates the address of the program memory.
MDo - MD3	Input pins that select an operation mode when writing to program memory or verifying its contents
D0 - D7	Input/output pins for 8-bit data used when writing to program memory or verifying its contents

3.1 PROGRAM MEMORY WRITE/VERIFY MODES

If +6 V is applied to the V_{DD} pin and +12.5 V is applied to the V_{PP} pin after a certain duration of reset status (V_{DD} = 5 V, $\overline{\text{RESET}}$ = 0 V), the μ PD17P108 enters program memory write/verify mode. A specific operating mode is then selected by setting the MD₀ through MD₃ pins as follows. Connect each pin not listed in Table 3-1 to ground through a pull-down resistor.

Table 3-2 Specification of Operating Modes

	Op	erating mod	le specificat	lion	- Operating mode			
Vpp	Vdd	MD ₀	MD ₁	MD ₂	MD3			
+12.5 V	+6 V	Н	L	Н	L	Program memory address clear mode		
		L	Н	Н	Н	Write mode		
		L	L	н	н	Verify mode		
		Н	×	Н	Н	Program inhibit mode		

×: Don't care. L (low) or H (high)

3.2 WRITING TO PROGRAM MEMORY

The procedure for writing to program memory is described below; high-speed write is possible.

- (1) Pull down the levels of all unused pins to GND by means of resistors. Bring the CLK pin to low level.
- (2) Apply 5 V to the VDD pin and bring the VPP pin to low level.
- (3) Wait 10 μ s. Then apply 5 V to the VPP pin.
- (4) Set the mode selection pins to program memory address clear mode.
- (5) Apply 6 V to the V_DD pin and 12.5 V to the V_PP pin.
- (6) Select program inhibit mode.
- (7) Write data in 1-ms write mode.
- (8) Select program inhibit mode.
- (9) Select verify mode. If the write operation is found successful, proceed to step (10). If the operation is found unsuccessful, repeat steps (7) to (9).
- (10) Perform additional write for X (number of repetitions of steps (7) to (9)) \times 1 ms.
- (11) Select program inhibit mode.
- (12) Increment the program memory address by one on reception of four pulses on the CLK pin.
- (13) Repeat steps (7) to (12) until the last address is reached.
- (14) Select program memory address clear mode.
- (15) Apply 5 V to the V_DD and V_PP pins.
- (16) Turn power off.

A timing chart for program memory writing steps (2) to (12) is shown below.

NEC

3.3 READING PROGRAM MEMORY

- (1) Pull down the levels of all unused pins to GND by means of resistors. Bring the CLK pin to low level.
- (2) Apply 5 V to the V_{DD} pin and bring the V_{PP} pin to low level.
- (3) Wait 10 μ s. Then apply 5 V to the VPP pin.
- (4) Set the mode selection pins to program memory address clear mode.
- (5) Apply 6 V to the V_DD pin and 12.5 V to the V_PP pin.
- (6) Select program inhibit mode.
- (7) Select verify mode. Data is output sequentially one address at a time for every four input clock pulses on the CLK pin.
- (8) Select program inhibit mode.
- (9) Select program memory address clear mode.
- (10) Apply 5 V to the V_DD and V_PP pins.
- (11) Turn power off.

A timing chart for program memory reading steps (2) to (9) is shown below.

4. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol		Conditions	Rated value	Unit
Supply voltage	Vdd			-0.3 to +7.0	V
PROM supply voltage	Vpp			-0.3 to +13.5	V
Input voltage	Vi	P0A, P0C	, P0D, RESET	-0.3 to VDD + 0.3	V
		P0B		-0.3 to +11	V
Output voltage	Vo	P0A, P0C	, P0D	-0.3 to V _{DD} + 0.3	V
		P0B		-0.3 to +11	V
High-level output current	Іон	Each of P	0A, P0C, and P0D	-5	mA
		Total of al	l output pins	-15	mA
Low-level output current	lol	Each of P	0A, P0B, P0C, and P0D	30	mA
		Total of al	l output pins	100	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C
Allowable dissipation	Pd	T _A = 85 °C	22-pin plastic shrink DIP	400	mW
			24-pin plastic SOP	250	

Caution Absolute maximum ratings are rated values beyond which some physical damages may be caused to the product; if any of the parameters in the table above exceeds its rated value even for a moment, the quality of the product may deteriorate. Be sure to use the product within the rated values.

CAPACITANCE (TA = 25 °C, VDD = 0 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
I/O capacitance	Сю	0 V for pins other than pins to be measured			15	pF

I/O: Input/output

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 2.5 to 6.0 V)

Parameter	Symbol		Conditions	Min.	Тур.	Max.	Unit
High-level input	VIH1	P0A, P0C, P	0D	0.7Vdd		Vdd	V
voltage	VIH2	RESET		0.8Vdd		Vdd	V
	Vінз	P0B		0.8Vdd		9	V
Low-level input	VIL1	P0A, P0C, P	0D	0		0.3Vdd	V
voltage	VIL2	RESET		0		0.2Vdd	V
	VIL3	P0B		0		0.2Vdd	V
High-level output voltage	Vон	P0A, P0C, P V _{DD} = 4.5 to	0D 6.0 V, Іон = –2 mA	Vdd - 2.0			V
		P0A, P0C, P	0D, Іон = -200 µА	Vdd - 1.0			V
Low-level output voltage	Vol	P0A, P0B, P V _{DD} = 4.5 to	0C, P0D 6.0 V, Io∟ = 15 mA			2.0	V
		P0A, P0B, P	0C, P0D, Ιοι = 600 μA			0.5	V
High-level input leak-	Ілні	P0A, P0C, P	0D, Vin = Vdd			5	μΑ
age current	ILIH2	P0B, VIN = VI	DD			5	μΑ
	Іцнз	P0B, VIN = 9	V			10	μΑ
Low-level input leak-		P0A, P0C, P0D, $V_{IN} = 0 V$				-5	μΑ
age current	ILIL2	P0B, VIN = 0	V			-5	μΑ
High-level output leak-	ILOH1	P0A, P0C, P	0D, Vout = Vdd			5	μΑ
age current	ILOH2	P0B, Vout = '	Vdd			5	μΑ
	Ісонз	P0B, Vout =	9 V			10	μΑ
Low-level output leak- age current	Ilol	P0A, P0B, P	0C, P0D, Vout = 0 V			-5	μA
Power supply current	IDD1	Operation mode	V _{DD} = 5 V ±10 %, fcc = 1.0 MHz ±20 %		1.5	3.0	mA
			V _{DD} = 3 V ±10 %, fcc = 250 kHz ±20 %		500	900	μA
	Idd2	HALT mode	V _{DD} = 5 V ±10 %, fcc = 1.0 MHz ±20 %		1.3	2.5	mA
			V _{DD} = 3 V ±10 %, fcc = 250 kHz ±20 %		350	800	μΑ
	Idd3	STOP mode	V _{DD} = 5 V ±10 %		10	50	μΑ
			VDD = 3 V ±10 %		8	45	μA

CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE (TA = -40 to +85 °C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data hold supply volt- age	Vdddr		2.0		6.0	V
Data hold supply current	Idddr	V _{DDDR} = 2.0 V		0.1	5.0	μA

AC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 2.5 to 6.0 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
CPU clock cycle time (instruction execution	tcy	V _{DD} = 4.5 to 6.0 V	6.6		160	μs
time)			22.8		160	μs
RLSHALT, RLSSTOP high level width	t RLSH		10			μs
RESET low level width	trsl		10			μs

Remark tcy = 8/fcc (fcc: frequency of system clock oscillator)

RLSHALT and RLSSTOP input timing

RESET input timing

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
System clock oscilla-	fcc	V_{DD} = 4.5 to 5.5 V, Rosc = 22 k Ω	800	1000	1200	kHz
tion frequency		V_{DD} = 2.7 to 3.3 V, Rosc = 91 k Ω	200	250	300	kHz
		V_{DD} = 2.5 to 6.0 V, Rosc = 91 k Ω	150	250	350	kHz

SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (T_A = -40 to +85 °C)

Caution The above conditions do not allow a resistance error.

DC PROGRAMMING CHARACTERISTICS (TA = 25 °C, VDD = 6.0 ±0.25 V, VPP = 12.5 ±0.5 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input voltage high	VIH1	Except OSC1	0.7Vdd		Vdd	V
	VIH2	OSC1	Vdd - 0.5		Vdd	V
Input voltage low	VIL1	Except OSC1	0		0.3Vdd	V
	VIL2	OSC1	0		0.4	V
Input leakage current	lu	VIN = VIL OF VIH			10	μΑ
Output voltage high	Vон	Іон = −1 mA	Vdd - 1.0			V
Output voltage low	Vol	lo∟ = 1.6 mA			0.4	V
VDD power supply current	loo				30	mA
V _{PP} power supply current	IPP	MD0 = Vil, MD1 = ViH			30	mA

Cautions 1. VPP must be under +13.5 V including overshoot.

2. VDD must be applied before VPP on and must be off after VPP off.

AC PROGRAMMING CHARACTERISTICS (TA = 25 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.5 V)

Parameter	Symbol	Note 1	Conditions	Min.	Тур.	Max.	Unit
Address setup time $^{Note\ 2}$ to $MD_0 \downarrow$	tas	tas		2			μs
MD1 setup time to $MD_0\downarrow$	t _{M1S}	toes		2			μs
Data setup time to $MD_0\downarrow$	tos	tos		2			μs
Address hold time Note 2 to MD ₀ ↑	tан	tан		2			μs
Data hold time to MD₀↑	tон	tон		2			μs
Delay from MD₀↑ to data output float	tdf	tor		0		130	ns
V _{PP} setup time to MD₃↑	tvps	tvps		2			μs
V _{DD} setup time to MD ₃ ↑	tvds	tvcs		2			μs
Initial program pulse width	tew	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD_0 setup time to $MD_1 \uparrow$	tмos	tces		2			μs
Delay from $MD_0\downarrow$ to data output	tov	tov	MD0 = MD1 = VIL			1	μs
MD₁ hold time to MD₀↑	tм1н	tоен	tм1н + tм1к • 50 μs	2			μs
MD1 recovery time to $MD_0\downarrow$	t _{M1R}	tor	1	2			μs
Program counter reset time	t PCR	-		10			μs
CLK input high, low level range	txн, txL	-		0.42			μs
CLK input frequency	fx	_				1.2	MHz
Initial mode set time	tı	-		2			μs
MD₃ setup time to MD₁↑	tмзs	-		2			μs
MD ₃ hold time to MD ₁ \downarrow	tмзн	-		2			μs
MD_3 setup time to $MD_0 {\downarrow}$	tмзsr	-	Read program memory	2			μs
Delay from address Note 2 to data output	t dad	tacc	Read program memory			2	μs
Hold time from address Note 2 to data output	t had	tон	Read program memory	0		130	ns
MD₃ hold time to MD₀↑	tмзнк	-	Read program memory	2			μs
Delay from MD₃↓ to data output float	t dfr	-	Read program memory			2	μs
Reset setup time	tres			10			μs

Notes 1. Symbols used for μ PD27C256A (The μ PD27C256A is used for maintenance.)

2. The internal address is incremented by one at the falling edge of the third clock (CLK) input.

NEC

Write program memory timing

Read program memory timing

5. CHARACTERISTIC CURVES (FOR REFERENCE)

fcc vs. V_DD for Operation Guarantee Range (T_A = -40 to +85 $^\circ C)$

Rosc vs. V_{DD} for Operation Guarantee Range ($T_A = -40$ to +85 °C)

Power supply voltage $V_{\text{DD}}\left[V\right]$

19

NEC

Caution The absolute maximum rating of the current is 30 mA per pin.

Caution The absolute maximum rating of the current is –5 mA per pin.

6. PACKAGE DRAWINGS

22 PIN PLASTIC SHRINK DIP (300 mil)

NOTES

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	23.12 MAX.	0.911 MAX.
В	2.67 MAX.	0.106 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.85 MIN.	0.033 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
Ν	0.17	0.007
R	0~15°	0~15°
		\$22C-70-300B-1

S22C-70-300B-1

24 PIN PLASTIC SOP (300 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	15.54 MAX.	0.612 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016^{+0.004}_{-0.003}$
Е	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7±0.3	0.303±0.012
I	5.6	0.220
J	1.1	0.043
к	$0.20^{+0.10}_{-0.05}$	$0.008^{+0.004}_{-0.002}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
N	0.10	0.004
Р	3° ^{+7°} -3°	3°+7° -3°
		P24GM-50-300B-4

7. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD17P108.

For details of the recommended soldering conditions, refer to our document *SMD Surface Mount Technology Manual* (IEI-1207).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 7-1 Soldering Conditions for Surface-Mount Devices

µPD17P108GS: 24-pin plastic SOP (300 mil)

Soldering process	Soldering conditions
Partial heating method	Terminal temperature: 300 °C or less Flow time: 3 seconds or less (for each side of device)

Table 7-2 Soldering Conditions for Through Hole Mount Devices

µPD17P108CS: 22-pin plastic shrink DIP (300 mil)

Soldering process	Soldering conditions
Wave soldering (only for terminals)	Solder temperature: 260 °C or less Flow time: 10 seconds or less
Partial heating method	Terminal temperature: 300 °C or less
	Flow time: 3 seconds or less (for each terminal)

Caution In wave soldering, apply solder only to the terminals. Care must be taken that jet solder does not come in contact with the main body of the package.

 \star

APPENDIX A TINY MICROCONTROLLER FAMILY

Product name Item	μPD17103	μPD17103L	μPD17P103	μPD17104	μPD17104L	μPD17P104	
ROM capacity	Masked ROM		One-time PROM	Masked ROM		One-time PROM	
	1K byte (512 $ imes$	yte (512 \times 16 bits)					
RAM capacity	16×4 bits	× 4 bits					
Number of input/output port pins ^{Note}	11 (3)	16 (4)					
System clock	Ceramic oscilla	tion					
Instruction execution time	2 μs (at fx = 8 MHz)	8 μs (at fx = 2 MHz)	2 μs (at fx = 8 MHz)		8 μs (at fx = 2 MHz)	2 μs (at fx = 8 MHz)	
Standby function	HALT, STOP				<u>.</u>	·	
Supply voltage	 2.7 to 6.0 V (at fx = 500 kHz to 2 MHz) 4.5 to 6.0 V (at fx = 500 kHz to 8 MHz) 		 2.7 to 6.0 V (at fx = 500 kHz to 2 MHz) 4.5 to 6.0 V (at fx = 500 kHz to 8 MHz) 		• 1.8 to 3.6 V (at fx = 500 kHz to 2 MHz)	 2.7 to 6.0 V (at fx = 500 kHz to 2 MHz) 4.5 to 6.0 V (at fx = 500 kHz to 8 MHz) 	
Package	• 16-pin DIP	• 16-pin SOP	1	• 22-pin shrink	DIP	• 24-pin SOP	
One-time PROM	μPD17P103		_	μPD17P104		_	

Product name	μPD17107	μPD17107L	μPD17P107	μPD17108	μPD17108L	μPD17P108	
ROM capacity	Masked ROM		One-time PROM	Masked ROM		One-time PROM	
	1K byte (512 \times	byte (512 × 16 bits)					
RAM capacity	16×4 bits	× 4 bits					
Number of input/output port pins ^{Note}	11 (3)			16 (4)			
System clock	RC oscillation						
Instruction execution time	8 μs (at fcc = 1 MHz)	8 µs 40 µs 8 µs (at fcc = 1 MHz) (at fcc = 200 kHz) (at fcc = 1 MHz)			40 μs (at fcc = 200 kHz) 8 μs (at fcc = 1		
Standby function	HALT, STOP						
Supply voltage	 2.5 to 6.0 V (at fcc = 50 kHz) to 250 kHz) 4.5 to 6.0 V (at fcc = 50 kHz to 1 MHz) 	• 1.5 to 3.6 V (at fcc = 50 kHz to 250 kHz)	 2.5 to 6.0 V (at fcc = 50 kHz to 250 kHz) 4.5 to 6.0 V (at fcc = 50 kHz to 1 MHz) 		• 1.5 to 3.6 V (at fcc = 50 kHz to 250 kHz)	 2.5 to 6.0 V (at fcc = 50 kHz to 250 kHz) 4.5 to 6.0 V (at fcc = 50 kHz to 1 MHz) 	
Package	• 16-pin DIP	• 16-pin SOP		• 22-pin shrink	DIP	• 24-pin SOP	
One-time PROM	μPD17P107		_	μPD17P108		_	

Note A number enclosed in parentheses indicates the number of the N-ch open-drain outputs. N-ch open-drain outputs can be connected to internal pull-up resistors by specifying the mask option.

Remark The μ PD17P108 can be used to evaluate programs for the μ PD17108L. Note, however, that the allowable supply voltages for the μ PD17P108 and μ PD17108L do not fall in the same range.

*

APPENDIX B DEVELOPMENT TOOLS

The following support tools are available for developing programs for the μ PD17P108.

Hardware

Name	Description
In-circuit emulator [IE-17K IE-17K-ETNote 1 EMU-17KNote 2	The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators applicable to the 17K series. The IE-17K and IE-17K-ET are connected to the PC-9800 series (host machine) or IBM PC/AT TM through the RS-232-C interface. The EMU-17K is inserted into the extension slot of the PC-9800 series (host machine). Use the system evaluation board (SE board) corresponding to each product together with one of these in-circuit emulators. <i>SIMPLEHOST</i> [®] , a man machine interface, implements an advanced debug environment. The EMU-17K also enables user to check the contents of the data memory in real time.
SE board (SE-17108)	The SE-17108 is an SE board for the μ PD17108, μ PD17108L, or μ PD17P108. It is used solely for evaluating the system. It is also used for debugging in combination with the incircuit emulator.
Emulation probe (EP-17104CX)	The EP-17104CX is an emulation probe for the μ PD17108, μ PD17108L, μ PD17P108, μ PD17104L, μ PD17104L, or μ PD17P104.
PROM programmer AF-9703Note 3 AF-9704Note 3 AF-9705Note 3 AF-9706Note 3	The AF-9703, AF-9704, AF-9705, and AF-9706 are PROM programmers for the μ PD17P108. Use one of these PROM programmers with the program adapter, AF-9799, to write a program into the μ PD17P108.
Program adapter (AF-9799 ^{Note 3})	The AF-9799 is a socket unit for the μ PD17P103, μ PD17P104, μ PD17P107 or μ PD17P108. It is used with the AF-9703, AF-9704, AF-9705, or AF-9706.

Notes 1. Low-end model, operating on an external power supply

- 2. The EMU-17K is a product of IC Co., Ltd. Contact IC Co., Ltd. (Tokyo, 03-3447-3793) for details.
- 3. The AF-9703, AF-9704, AF-9705, AF-9706, and AF-9799 are products of Ando Electric Co., Ltd. Contact ★ Ando Electric Co., Ltd. (Tokyo, 03-3733-1151) for details.

Software

Name	Description	Host machine	OS		Distribution media	Part number
17K series assembler (AS17K)	AS17K is an assembler applicable to the 17K series. In developing μ PD17P108 programs, AS17K is used in combination with a device file (AS17103).	PC-9800 series	MS-DOS TM		5.25-inch, 2HD	μS5A10AS17K
					3.5-inch, 2HD	μS5A13AS17K
		IBM PC/AT	PC DOS TM		5.25-inch, 2HC	μS7B10AS17K
					3.5-inch, 2HC	μS7B13AS17K
Device file (AS17103)	AS17103 is a device file for the μ PD17108 and μ PD17P108. It is used together with the assembler (AS17K), which is applicable to the 17K series.	PC-9800 series			5.25-inch, 2HD	μS5A10AS17103 Note
					3.5-inch, 2HD	μS5A13AS17103 Note
		IBM PC/AT	PC DOS		5.25-inch, 2HC	μS7B10AS17103 Note
					3.5-inch, 2HC	μS7B13AS17103 Note
Support software (<i>SIMPLEHOST</i>)	SIMPLEHOST, running under Windows TM , provides man- machine-interface in develop- ing programs by using a personal computer and in- circuit emulator.	PC-9800 series	MS-DOS	Windows	5.25-inch, 2HD	μ\$5A10ΙΕ17Κ
					3.5-inch, 2HD	μS5A13IE17K
		IBM PC/AT	PC DOS		5.25-inch, 2HC	μ\$7B10IE17K
					3.5-inch, 2HC	μS7B13IE17K

Note The μ S××××AS17103 contains a device file for the μ PD17103, μ PD17104, μ PD17107, μ PD17108, μ PD17103L, μ PD17104L, μ PD17107L, and μ PD17108L.

 \star

*

*

Remark The following table lists the versions of the operating systems described in the above table.

OS	Versions			
MS-DOS	Ver. 3.30 to Ver. 5.00ANote			
PC DOS	Ver. 3.1 to Ver. 5.0 ^{Note}			
Windows	Ver. 3.0 to Ver. 3.1			

Note MS-DOS versions 5.00 and 5.00A and PC DOS Ver. 5.0 are provided with a task swap function. This function, however, cannot be used in these software packages.

Cautions on CMOS Devices

① Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

2 CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the V_{DD} or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

③ Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

NEC

SIMPLEHOST is a registered trademark of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.