

LATCH and DRIVER for FIP COMOS LSI

DESCRIPTION

JEC

The μ PD6323 is a latch and driver CMOS IC for FIP (Fluorescent Indicator Panel). For multiplex wiring, the μ PD6323 is supplied with the serial interface circuit, 21 bit shift register, 21 bit data latch and 21 outputs. The serial data transfer from the data source to the μ PD6323 is accomplished with 3 signals.

FEATURES

- Direct Connection to Battery enable.
- Wide Supply Voltage VDD = 8.0 to 14 (V)
- Serial Input 21 bit Shift Register Incorporated.
- Data Control by Transmission Clock (External) and Latch.
- Suitable for Static Display by Buffer Register.
- Brightness Control Enable: External Duty Control.
- Output Characteristics Vout = 40 V,

 $I_{out} = 5.0 \text{ mA}.$

- Serial Interface Format: Compatible with NEC microcomputer.
- Difference of µPD6323C/BC

PARAMETER	SYMBOL	μPD6323C	μPD6323BC
Output Voltage	Voo to Vo20	–25 V	-40 V
Low Supply Voltage	Vdd (L)	—	4 ∨ ^{Note}

Notes 1. Function Operate

ORDERING INFORMATION

PART NUMBER	PACKAGE
μPD6323C	28 pin Plastic DIP (400 mil)
μPD6323BC	28 pin Plastic DIP (400 mil)

BLOCK DIAGRAM

PIN CONNECTION (Top View)

SCK 1	0	28 Vdd
BI 2		27 LH
O0 3		26 SI
O1 4		25 O11
O2 5		24 O12
O₃ 6		23 O13
O4 7		22 O14
O₅ 8		21 O15
O6 9		20 O16
O7 10		19 O17
O8 11		18 O ₁₈
O9 12		17 O19
O10 13		16 O ₂₀
Vss 14		15 SO

FUNCTION

PIN No.	SYMBOL	FUNCTION	INPUT/OUTPUT	EXPLANATION
1	SCK	Serial Clock Input	INPUT	The SI data are read and stored in the 21 bit shift register
				at the rising edge of $\overline{\text{SCK}}.$ DATA output from SO at the
				dropping edge of SCK.
2	BI	Blanking Input	INPUT	When "L" level signal is supplied to the B1, O0 to O20 are
				active.
				"H": Oo to O20 are disabled.
				Dimmer function is possible by external duty control.
3	O0	Segment and Driver for	OUTPUT	Outputs are, Pch MOS Open Drain.
4	O1	FIP		These 11 Outputs are the Outputs of 11 bit output data
5	O2	(O ₀ to O ₁₀)		latch, which can drive FIP directly.
6	O3			
7	O4			• VDD
8	O ₅			
9	O ₆			
10	O7			
11	O8			
12	O ₉			¥ 00000020 Vss
13	O10			135
14	Vss	GND		Connection to GND.
15	SO	Serial Data Output	OUTPUT	Serial data output at the dropping edge of $\overline{\text{SCK}}$.
				In case "n" pieces of μ PD6323AC are serial connected, so
				it is possible to connect one to next SI.
16	O ₂₀	Segment and driver for	OUTPUT	Outputs are, Pch MOS Open Drain.
17	O19	FIP		These 10 outputs are the Outputs of 10 bit output data
18	O ₁₈	(O11 to O20)		latch, which can drive FIP directly.
19	O17			
20	O ₁₆			
21	O15			
22	O14			
23	O ₁₃			
24	O12			
25	O11			
26	SI	Serial data Input	INPUT	Serial Data Input. The SI data are read and stored in the
				21 bit shift register at the rising edge of \overline{SCK} .
27	ĹΗ	Latch and Hold Input	INPUT	When "H" level signal is supplied to the \overline{LH} , the data of 21
				bit shift register are normally transferred to the 21 bit
				output data latch. At the time of the rising edge of $\overline{\text{LH}}$; the
				data of 21 bit output data latch are held.
				"L": The data of 21 bit output data latch are protected.
28	Vdd	Supply Voltage at VDD		V _{DD} = 8.0 to 14 (V)
		terminal		

* To prevent latch up breakdown, the power should be turned ON in order VDD, logic input. It should be turned OFF in opposite order. This relationship should be followed during transition period as well.

ABSOLUTE MAXIMUM RATINGS (TA = 25 $^{\circ}$ C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage at VDD terminal	Vdd	18	V
Input Voltage	VIN	-0.3 to VDD	V
Output Voltage (µPD6323C)	Voo to Vo20	-25 ^{Note 1}	V
Output Voltage (µPD6323AC/BC)	Voo to Vo20	_40 ^{Note 1}	V
Output Current	100 to 1020	-5.0	mA
Operating Temperature	ТА	-40 to +85	°C
Storage Temperature	Tstg	-55 to +125	°C

Notes 1. These Voltages are referenced to the V_{DD} .

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Operating Temperature	TA	-40		+85	°C
Operating Supply Voltage	Vdd	8.0		14	V
Output Voltage (µPD6323C)Note 2	Voo to Vo20		-19	-24	V
Output Voltage (µPD6323AC/BC) ^{Note 2}	Voo to Vo20		-19	-35	V
Output Current	100 to 1020		-2.0	-5.0	mA
Input Voltage High	Vih	3.5		Vdd	V
Input Voltage Low	VIL	Vss		1.0	V
SCK Frequency	fscк			500	KHz
SCK Cycle Time ^{Note 3}	tксу	2.0			μs
SCK High Level Pulse WidthNote 3	tкнw	0.9			μs
SCK Low Level Pulse Width Note 3	tklw	0.9			μs
SI Setup Time to SCK 1 Note 3	tsıк	0.4			μs
SI Hold Time ^{Note 3}	tksi	0.4			μs
$\overline{\text{SCK}} \to \overline{\text{LH}}$ Valid Time ^{Note 4}	toll	1.8			μs
LH High Level Pulse Width ^{Note 4}	t _{LHW}	1.89			μs
BI High Level Pulse Width ^{Note 5}	tвнw	0.4			μs

Notes 2. These Voltages are referenced to the V_{DD} .

3. See Fig. 1.

4. See Fig. 2.

5. See Fig. 3.

ELECTRICAL CHARACTERISTICS (Recommended operating conditions)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input Leakage Current	lı.			±10	μA	VIN = VSS OF VIN = VDD
SO Output Voltage High	Vsoн	Vdd - 1.0		Vdd	V	Isoн = -1.0 mA
SO Output Voltage Low	Vsol	Vss		0.5	V	IsoL = 1.0 mA
Output Voltage High	Vo	Vdd - 1.5		Vdd	V	lo = -5.0 mA
						Oo to O20 Output
Output Leakage Current	IOLL			10	μA	V _{DD} to V _O = 40 V
						Oo to O20 Output
Supply Current at VDD Terminal	IDD			2.0	mA	All Input = [High]
						All Output = Open
Supply Voltage at VDD Terminal to	Vdd(H)	3.0			V	Drop VDD on latch
Keep DATA						DATA (MIN.)
Input Capacitance	CIN			15	pF	f = 1.0 MHz
$\overline{SCK} \downarrow \to SO Valid Time^{Note 6}$	tкso			0.5	μs	
$BI \to Q_n \text{ Valid Time}^{\textbf{Note 5}}$	tвко			1.8	μs	
Low Supply Voltage (µPD6323BC)	VDD(L)	4.0			V	Function Operate

Notes 6. See Fig. 4.

SWITCHING CHARACTERISTICS

TIMING CHART

APPLICATION CIRCUIT

(1) AUTOMOTIVE DASHBOARD SYSTEM SYSTEM CONSTRUCTION

Each data of Engine speed, speed, temperature and fuel is divided to each group by \overline{LH} control. Each data is transferred by SI and \overline{SCK} control.

FIP dimmer control is capable by BI's duty control.

(2) 12 V FIP DRIVER CIRCUIT

(3) HIGH VOLTAGE (18 to 35 V) FIP DRIVER CIRCUIT

(4) LED DRIVER CIRCUIT

(5) EXAMPLE OF SOFTWARE

Using of serial I/O of μ -COM 75 series Subroutine of 24 bit data transfer

SI OUT :	ANP	6, 7
	LHLI	05H
LOOP :	LAM	HL ⁻
	TAMSIO	
	SIO	
	SKI	2
	JCP	\$–2
	DLS	
	JCP	LOOP
	ORP	6, 8
	ANP	6, 7
	RT	

RAM	TRANSFER BIT				
(ADD)	3	2	1	0	
00H	O3	O ₂	O1	O ₀	
01H	O 7	O 6	O 5	O4	
02H	O11	O10	O9	O8	
03H	O15	O14	O ₁₃	O ₁₂	
04H	O19	O18	O17	O16	
05H	O23	O22	O 21	O ₂₀	

Allot port

P63 - LH

PACKAGE DIMENSION

 μ PD6323C/BC

28PIN PLASTIC DIP (400 mil)

NOTES

- 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	35.56 MAX.	1.400 MAX.
В	1.27 MAX.	0.050 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	1.1 MIN.	0.043 MIN.
G	3.5±0.3	0.138±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.72 MAX.	0.226 MAX.
К	10.16 (T.P.)	0.400 (T.P.)
L	8.6	0.339
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
Ν	0.25	0.01
Р	0.9 MIN.	0.035 MIN.
R	0~15°	0~15°
		P28C-100-400-1

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product. Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF THROUGH HOLE MOUNT DEVICE

μPD6323C/BC

Soldering process	Soldering conditions	Symbol
Wave soldering	Solder temperature: 260 °C or below,	
	Flow time: 10 seconds or below	

Reference

"Quality Grades On NEC Semiconductor Devices" (IEI-1209)

"NEC Semiconductor Device Reliability/Quality Controls" (IEI-1206)

"Semiconductor Device Mounting Technology Manual" (IEI-1207)

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11