MOS INTEGRATED CIRCUIT

μPD78F9306, 78F9316

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F9306 and 78F9316 belong to the μ PD789306, 789316 Subseries (for LCD drivers) in the 78K/0S Series.

The μ PD78F9306 has flash memory in place of the internal ROM of the μ PD789304 and 789306, and the μ PD78F9316 has flash memory in place of the internal ROM of the μ PD789314 and 789316.

Because flash memory allows the program to be written and erased electrically with the device mounted on the board, this product is ideal for the evaluation stages of system development, small-scale production, and rapid development of new products.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789306, 789316 Subseries User's Manual: U14800E 78K/0S Series User's Manual Instructions: U11047E

FEATURES

- Pin compatible with mask ROM version (except VPP pin)
- Flash memory: 16 KB
- Main system clock
 Ceramic/crystal oscillation: μPD78F9306
 RC oscillation: μPD78F9316
- I/O ports: 23
- Serial interface: 2 channels
 Switchable between 3-wire serial I/O mode and UART mode: 1 channel
 3-wire serial I/O mode: 1 channel
- LCD controller/driver
 Segment signals: 24, common signals: 4
- Timer: 5 channels
- Power supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

Remote control devices, healthcare equipment, etc.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION

Part Number	Package
μPD78F9306GC-AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD78F9306GK-9ET	64-pin plastic TQFP (12 \times 12)
μPD78F9316GC-AB8	64-pin plastic QFP (14 $ imes$ 14)
μPD78F9316GK-9ET	64-pin plastic TQFP (12 $ imes$ 12)

★ 78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

The major functional differences among the subseries are listed below.

	Function										VDD	
		ROM	8-Bit	16-Bit	Watch	WDT	8-Bit	10-Bit	Serial	I/O	MIN.	Remarks
Subseries Name		Capacity					A/D	A/D	Interface		Value	
Small-scale	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	-	-	1 ch (UART:	34	1.8 V	-
package,	µPD789026	4 K to 16 K			-				1 ch)			
general- purpose	μPD789074	2 K to 8 K								24		
applications	μPD789014	2 K to 4 K	2 ch	-						22		
Small-scale	μPD789177	16 K to 24 K	3 ch	1 ch	1 ch		_	8 ch	1 ch (UART:	31		-
package,	μPD789167						8 ch	-	1 ch)			
general- purpose	μPD789156	8 K to 16 K	1 ch		-		-	4 ch		20		On-chip
applications	μPD789146						4 ch	-				EEPROM
and A/D converter	μPD789134A	2 K to 8 K					-	4 ch				RC-oscillation
COnventer	μPD789124A						4 ch	-				version
	μPD789114A						-	4 ch				-
	μPD789104A						4 ch	-				
Inverter control	μPD789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30	4.0 V	_
VFD drive	μPD789871	4 K to 8 K	3 ch	-	1 ch	1 ch	-	-	1 ch	33	2.7 V	-
LCD drive	μPD789488	32 K	3 ch	1 ch	1 ch	1 ch	-	8 ch	2 ch (UART: 1 ch)	45	1.8 V	_
	μPD789417A	12 K to						7 ch	1 ch (UART:	43		
	μPD789407A	24 K					7 ch	-	1 ch)			
	μPD789456	12 K to	2 ch				-	6 ch		30		
	μPD789446	16 K					6 ch	-				
	μPD789436						-	6 ch		40		
	μPD789426						6 ch	-				
	μPD789316	8 K to 16 K					-		2 ch (UART: 1 ch)	23		RC-oscillation version
	µPD789306											-
Dot LCD drive	μPD789835	24 K to 60 K	6 ch	-	1 ch	1 ch	3 ch	-	1 ch (UART: 1 ch)	28	1.8 V	-
	μPD789830	24 K	1 ch	1 ch			-	Ī		30	2.7 V	
ASSP	μPD789477	24 K	3 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch (UART: 1 ch)	45	1.8 V	On-chip LCD
	μPD789467	4 K to 24 K	2 ch	-			1 ch	1	-	18		
	μPD789327						_	1	1 ch	21		
	µPD789803	8 K to 16 K			_				2 ch (USB:	41	3.6 V	-
	µPD789800	8 K							1 ch)	31	4.0 V	
	µPD789840						4 ch	Ī	1 ch	29	2.8 V	
	μPD789861	4 K					_		_	14	1.8 V	RC-oscillation version, on-chip EEPROM
	μPD789860											On-chip EEPROM

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

	Item		μPD78F9306	μPD78F9316			
Internal	Flash	memory	16 KB				
memory High-speed RAM		speed RAM	512 bytes				
	LCD	display RAM	24 bytes				
Main system (oscillation f)	Ceramic/crystal oscillation (1.0 to 5.0 MHz)	RC oscillation (2.0 to 4.0 MHz)			
Subsystem ((oscillation f)	Crystal oscillation (32.768 kHz)				
Minimum instruction execution time		execution time	0.4 μs/1.6 μs (@ 5.0 MHz operation with main system clock)	0.5 μ s/2.0 μ s (@ 4.0 MHz operation with main system clock)			
			122 μ s (@ 32.768 kHz operation with subsystem clock)				
General-pur	pose regi	sters	8 bits × 8 registers				
Instruction set			16-bit operationBit manipulation (set, reset, test)				
I/O ports			Total: 23 • CMOS I/O: 19 • N-ch open drain: 4				
Timers			 16-bit timer: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 				
Serial interfa	ace		Switchable between 3-wire serial I/O mode and UART mode: 1 channel 3-wire serial I/O mode: 1 channel				
LCD controller/driver			 Segment signal outputs: 24 (Max.) Common signal outputs: 4 (Max.) 				
Vectored int	errupt M	laskable	Internal: 9, External: 5				
sources Non-maskable		lon-maskable	Internal: 1				
Power supp	ly voltage	•	V _{DD} = 1.8 to 5.5 V				
Operating a	mbient tei	mperature	T _A = -40 to +85°C				
Package			 64-pin plastic QFP (14 × 14) 64-pin plastic TQFP (12 × 12) 				

CONTENTS

	1.	PIN CONFIGURATION (Top View)	7
	2.	BLOCK DIAGRAM	9
	3.	PIN FUNCTIONS	10
		3.1 Port Pins	10
		3.2 Non-Port Pins	11
		3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	12
	4.	MEMORY SPACE	14
	5.	FLASH MEMORY PROGRAMMING	15
		5.1 Selecting Communication Mode	15
		5.2 Function of Flash Memory Programming	16
		5.3 Connecting Flashpro III	
		5.4 Example of Settings for Flashpro III (PG-FP3)	18
	6.	OVERVIEW OF INSTRUCTION SET	19
		6.1 Conventions	19
		6.2 List of Operations	21
	7.	ELECTRICAL SPECIFICATIONS	26
*	8.	CHARACTERISTICS CURVES OF LCD CONTROLLER/DRIVER (REFERENCE VALUES)	42
	9.	PACKAGE DRAWINGS	44
*	10.	RECOMMENDED SOLDERING CONDITIONS	46
	APF	PENDIX A. DIFFERENCES BETWEEN μ PD78F9306, 78F9316 AND MASK ROM VERSIONS	47
	APF	PENDIX B. DEVELOPMENT TOOLS	48
	APF	PENDIX C. RELATED DOCUMENTS	50

1. PIN CONFIGURATION (Top View)

Caution Connect the VPP pin directly to the Vss pin in normal operation mode.

Remark Pin names enclosed in parentheses apply when using the μ PD78F9316.

NEC

μPD78F9306, 78F9316

ASCK20:	Asynchronous serial input	S0 to S23:	Segment output
CAPH, CAPL:	LCD power supply capacitance control	SCK10, SCK20:	Serial clock
CL1, CL2:	RC oscillator	SI10, SI20:	Serial input
COM0 to COM3:	Common output	SO10, SO20:	Serial output
CPT20:	Capture trigger input	TMI40:	Timer input
INTP0 to INTP3:	External interrupt input	TO20, TO30, TO40:	Timer output
KR0 to KR3:	Key return	TxD20:	Transmit data
P00 to P03:	Port 0	VDD:	Power supply
P10 to P13:	Port 1	VLC0 to VLC2:	LCD power supply
P20 to P26:	Port 2	VPP:	Programming power supply
P30 to P33:	Port 3	Vss:	Ground
P50 to P53:	Port 5	X1, X2:	Crystal/ceramic oscillator
RESET:	Reset	XT1, XT2:	Crystal oscillator
RxD20:	Receive data		

2. BLOCK DIAGRAM

Remark Pin names enclosed in parentheses apply when using the μ PD78F9316.

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0. 4-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified in port units by pull-up resistor option register 0 (PU0) or key return mode register 00 (KRM00).	Input	KR0 to KR3
P10 to P13	I/O	Port 1. 4-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified in port units by pull-up resistor option register 0 (PU0).	Input	_
P20	I/O	Port 2. 7-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified in bit units by pull-up resistor option register B2 (PUB2).	Input	SCK10
P21				SO10
P22				SI10
P23				SCK20/ASCK20
P24				SO20/TxD20
P25				SI20/RxD20
P26				TO20
P30	I/O	Port 3.	Input	INTP0/CPT20
P31		4-bit I/O port.		INTP1/TO30/TMI40
P32		Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified in bit units by pull-up resistor option register B3 (PUB3).		INTP2/TO40
P33				INTP3
P50 to P53	I/O	Port 5. 4-bit I/O port. Input/output can be specified in 1-bit units.	Input	_

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt input for which the valid edge (rising edge,	Input	P30/CPT20
INTP1		falling edge, or both rising and falling edges) can be specified		P31/TO30/TMI40
INTP2				P32/TO40
INTP3				P33
KR0 to KR3	Input	Key return signal detection	Input	P00 to P03
SCK10	Input/	Serial clock input/output for serial interface 10 (SIO10)	Input	P20
SCK20	output	Serial clock input/output for serial interface 20 (SIO20)		P23/ASCK20
SI10	Input	Serial data input for serial interface 10 (SIO10)	Input	P22
SI20		Serial data input for serial interface 20 (SIO20)		P25/RxD20
SO10	Output	Serial data output for serial interface 10 (SIO10)	Input	P21
SO20		Serial data output for serial interface 20 (SIO20)		P24/TxD20
ASCK20	Input	Serial clock input for asynchronous serial interface	Input	P23/SCK20
RxD20	Input	Serial data input for asynchronous serial interface	Input	P25/SI20
TxD20	Output	Serial data output for asynchronous serial interface	Input	P24/SO20
TO20	Output	16-bit timer 20 (TM20) output	Input	P26
CPT20	Input	Capture edge input	Input	P30/INTP0
TO30	Output	8-bit timer 30 (TM30) output	Input	P31/INTP1/TMI40
TO40	Output	8-bit timer 40 (TM40) output	Input	P32/INTP2
TMI40	Input	External count clock input to 8-bit timer 40 (TM40)	Input	P31/INTP1/TO30
S0 to S23	Output	Segment signal output for LCD controller/driver	Low-level output	-
COM0 to COM3	Output	Common signal output for LCD controller/driver	Low-level output	-
VLC0 to VLC2	-	LCD drive voltage	-	_
САРН	_	Connection pin for LCD driver's capacitor	_	_
CAPL	_		_	_
X1 ^{Note 1}	Input	Connecting crystal resonator for main system clock oscillation	-	_
X2 ^{Note 1}	_		_	_
CL1 ^{Note 2}	Input	Connections to resistor (R) and capacitor (C) for main system	-	-
CL2 ^{Note 2}	_	clock oscillation	_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	-	_
XT2	_		_	_
RESET	Input	System reset input	Input	-
Vdd	_	Positive power supply	_	-
Vss	_	Ground potential	_	_
Vpp	-	Flash memory programming mode setting. High-voltage application for program write/verify. In normal operation mode, connect directly to V_{SS} .	-	-

Notes 1. *μ*PD78F9306 only

2. μPD78F9316 only

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, refer to Figure 3-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/KR0 to P03/KR3	8-A	I/O	Input mode: Independently connect to VDD or VSS via a resistor.
P10 to P13	5-A		Output mode: Leave open.
P20/SCK10	8-A		
P21/SO10			
P22/SI10			
P23/SCK20/ASCK20			
P24/SO20/TxD20			
P25/SI20/RxD20			
P26/TO20			
P30/INTP0/CPT20			Input mode: Independently connect to Vss via a resistor.
P31/INTP1/TO30/ TMI40			Output mode: Leave open.
P32/INTP2/TO40			
P33/INTP3			
P50 to P53	13-V		Input mode: Independently connect to VDD via a resistor. Output mode: Leave open.
S0 to S23	17	Output	Leave open.
COM0 to COM3	18		
VLC0 to VLC2	_	_	
CAPH, CAPL	_		
XT1	_	Input	Connect to Vss.
XT2		_	Leave open.
RESET	2	Input	_
Vpp	_	_	Connect directly to Vss.

Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map.

Figure 4-1. Memory Map

*

5. FLASH MEMORY PROGRAMMING

The program memory that is incorporated in the μ PD78F9306 and 78F9316 is flash memory.

With flash memory, it is possible to write programs on-board. Writing is performed by connecting a dedicated flash programmer (Flashpro III (Part No. FL-PR3, PG-FP3)) to the host machine and the target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

5.1 Selecting Communication Mode

Writing to flash memory is performed using the Flashpro III in a serial communication mode. Select one of the communication modes in Table 5-1. The selection of the communication mode is made by using the format shown in Figure 5-1. Each communication mode is selected using the number of VPP pulses shown in Table 5-1.

Table 5-1. List of Communication Mode	Table 5-1.	List of Communication Mode
---------------------------------------	------------	----------------------------

Communication Mode	Pins	VPP Pulses
3-wire serial I/O	SCK10/P20 SO10/P21 SI10/P22	0
	P00/KR0 (serial clock input) P01/KR1 (serial data output) P02/KR2 (serial data input)	1
UART	TxD20/SO20/P24 RxD20/SI20/P25	8

Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 5-1.

Figure 5-1. Format of Communication Mode Selection

5.2 Function of Flash Memory Programming

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 5-2 shows the major functions of flash memory programming.

Function	Description
Batch erase	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
Data write	Performs a write operation to the flash memory based on the write start address and the number of data to be written (number of bytes).
Batch verify	Compares the entire memory contents with the input data.

Table 5-2. Major Function of Flash Memory Programming

5.3 Connecting Flashpro III

The connection of the Flashpro III and the μ PD78F9306 and 78F9316 differs according to the communication mode (3-wire serial I/O or UART). The connections for each communication mode are shown in Figures 5-2 and 5-3, respectively.

Notes 1. n = 1, 2

2. Pin names enclosed in parentheses apply when using the μ PD78F9316.

*

Figure 5-2. Connection Example of Flashpro III When Using 3-Wire Serial I/O Mode (2/2)

2. Pin names enclosed in parentheses apply when using the μ PD78F9316.

Notes 1. n = 1, 2

2. Pin names enclosed in parentheses apply when using the μ PD78F9316.

*

5.4 Example of Settings for Flashpro III (PG-FP3)

When writing to flash memory using Flashpro III (PG-FP3), make the following settings.

- <1> Load a parameter file.
- <2> Select the mode of serial communication and serial clock with a type command.
- <3> Make the settings according to the example of settings for PG-FP3 shown below.

Communication Mode	Example of Settings for PG	-FP3	VPP Pulse Number ^{Note 1}
3-wire serial I/O	COMM PORT	SIO-ch0	0
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	
	COMM PORT	SIO-ch1	1
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	
UART	COMM PORT	UART-ch0	8
	CPU CLK	On Target Board	
	On Target Board	4.1943 MHz	
	UART BPS	9600 bps ^{Note 2}	

Table 5-3. Example of Settings for PG-FP3

- **Notes 1.** This is the number of V_{PP} pulses that are supplied by the Flashpro III at serial communication initialization. The pins that will be used for communication are determined according to this number.
 - **2.** Select one of 9600 bps, 19200 bps, 38400 bps, or 76800 bps.
- Remark COMM PORT: Serial port selection

SIO CLK:	Serial clock frequency selection
CPU CLK:	Input CPU clock source selection

6. OVERVIEW OF INSTRUCTION SET

This section lists the instruction set for the μ PD78F9306 and 78F9316.

6.1 Conventions

6.1.1 Operand expressions and description methods

Operands are described in "Operand" column of each instruction in accordance with the description method of the instruction operand expression (see the assembler specifications for details). When there are two or more description methods, select one of them. Uppercase letters and symbols, #, !, \$, and [] are key words and are described as they are. The meaning of each symbol is described below.

- #: Immediate data specification • \$: Relative address specification
- !: Absolute address specification

- []: Indirect address specification

For immediate data, enter an appropriate numeric value or a label. When using a label, be sure to enter the #, !, \$ and [] symbols.

For operand register expressions, r and rp, either function names (X, A, C, etc.) or absolute names (names in parenthesis in the table below, R0, R1, R2, etc.) can be used for the description.

Expression	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol
saddr	FE20H to FF1FH: immediate data or label
saddrp	FE20H to FF1FH: immediate data or label (even addresses only)
addr16	0000H to FFFFH: immediate data or label
	(even addresses only for 16-bit data transfer instruction)
addr5	0040H to 007FH: immediate data or label (even addresses only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label

Table 6-1. Operand Expressions and Description Methods

6.1.2 Description of "Operation" column

A:	A register; 8-bit accumulator
X:	X register
B:	B register
C:	C register
D:	D register
E:	E register
H:	H register
L:	L register
AX:	AX register pair; 16-bit accumulator
BC:	BC register pair
DE:	DE register pair
HL:	HL register pair
PC:	Program counter
SP:	Stack pointer
PSW:	Program status word
CY:	Carry flag
AC:	Auxiliary carry flag
Z:	Zero flag
IE:	Interrupt request enable flag
NMIS:	Flag indicating non-maskable interrupt servicing in progress
():	Memory contents indicated by address or register contents in parenthesis
Xн, Xl:	Higher 8 bits and lower 8 bits of 16-bit register
∧:	Logical product (AND)
∨:	Logical sum (OR)
₩:	Exclusive logical sum (exclusive OR)
— <u>:</u>	Inverted data
addr16:	16-bit immediate data or label
jdisp8:	Signed 8-bit data (displacement value)

6.1.3 Description of "Flag" column

(Blank):	Unchanged
0:	Cleared to 0
1:	Set to 1
×:	Set/cleared according to the result
R:	Previously saved value is restored

6.2 List of Operations

Mnemonic	Operand	Bytes	Clocks	Operation	Fla	Flags	
					ZA	C C	
MOV	r, #byte	3	6	$r \leftarrow byte$			
	saddr, #byte	3	6	$(saddr) \leftarrow byte$			
	sfr, #byte	3	6	$sfr \leftarrow byte$			
	A, r	1 2	4	A ← r			
	r, A Note	1 2	4	$r \leftarrow A$			
	A, saddr	2	4	$A \leftarrow (saddr)$			
	saddr, A	2	4	$(saddr) \leftarrow A$			
	A, sfr	2	4	$A \leftarrow sfr$			
	sfr, A	2	4	$sfr \leftarrow A$			
	A, !addr16	3	8	$A \leftarrow (addr16)$			
	!addr16, A	3	8	$(addr16) \leftarrow A$			
	PSW, #byte	3	6	$PSW \leftarrow byte$	×	× ×	
	A, PSW	2	4	$A \leftarrow PSW$			
	PSW, A	2	4	$PSW \leftarrow A$	×	× ×	
	A, [DE]	1	6	$A \leftarrow (DE)$			
	[DE], A	1	6	$(DE) \leftarrow A$			
	A, [HL]	1	6	$A \leftarrow (HL)$			
	[HL], A	1	6	$(HL) \leftarrow A$			
	A, [HL + byte]	2	6	$A \leftarrow (HL + byte)$			
	[HL + byte], A	2	6	(HL + byte) ← A			
ХСН	A, X	1	4	$A \leftrightarrow X$			
	A, r	2 2	6	A ↔ r			
	A, saddr	2	6	$A \leftrightarrow (saddr)$			
	A, sfr	2	6	$A \leftrightarrow (sfr)$			
	A, [DE]	1	8	$A \leftrightarrow (DE)$			
	A, [HL]	1	8	$A \leftrightarrow (HL)$			
	A, [HL + byte]	2	8	$A \leftrightarrow (HL + byte)$			
MOVW	rp, #word	3	6	$rp \leftarrow word$			
	AX, saddrp	2	6	$AX \leftarrow (saddrp)$			
	saddrp, AX	2	8	$(saddrp) \leftarrow AX$			
	AX, rp		4	AX ← rp			
	rp, AX Note		4	$rp \leftarrow AX$			
XCHW	AX, rp		8	$AX \leftrightarrow rp$			

Notes 1. Except r = A

- 2. Except r = A, X
- **3.** rp = BC, DE and HL only
- **Remark** One instruction clock cycle is one CPU clock cycle (fcPU) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation	F	lags	
					Z	AC	CY
ADD	A, #byte	2	4	A, CY \leftarrow A + byte	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte	×	×	×
	A, r	2	4	A, CY \leftarrow A + r	×	×	×
	A, saddr	2	4	A, CY \leftarrow A + (saddr)	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A + (addr16)	×	×	×
	A, [HL]	1	6	A, CY \leftarrow A + (HL)	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A + (HL + byte)	×	×	×
ADDC	A, #byte	2	4	A, CY \leftarrow A + byte + CY	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	Х
	A, r	2	4	$A,CY \gets A + r + CY$	×	×	Х
	A, saddr	2	4	A, CY \leftarrow A + (saddr) + CY	×	×	Х
	A, !addr16	3	8	A, CY \leftarrow A + (addr16) + CY	×	×	×
	A, [HL]	1	6	$A,CY \gets A + (HL) + CY$	×	×	Х
	A, [HL + byte]	2	6	A, CY \leftarrow A + (HL + byte) + CY	×	×	Х
SUB	A, #byte	2	4	A, CY \leftarrow A – byte	×	×	Х
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte	×	×	Х
	A, r	2	4	A, CY \leftarrow A – r	×	×	Х
	A, saddr	2	4	A, CY \leftarrow A – (saddr)	×	×	Х
	A, !addr16	3	8	A, CY \leftarrow A – (addr16)	×	×	×
	A, [HL]	1	6	A, CY \leftarrow A – (HL)	×	×	Х
	A, [HL + byte]	2	6	A, CY \leftarrow A – (HL + byte)	×	×	Х
SUBC	A, #byte	2	4	A, CY \leftarrow A – byte – CY	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte – CY	×	×	×
	A, r	2	4	$A,CY\leftarrowA-r-CY$	×	×	Х
	A, saddr	2	4	A, CY \leftarrow A – (saddr) – CY	×	×	Х
	A, !addr16	3	8	A, CY \leftarrow A – (addr16) – CY	×	×	×
	A, [HL]	1	6	$A,CY \leftarrow A - (HL) - CY$	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A – (HL + byte) – CY	×	×	×
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×		
	A, r	2	4	$A \leftarrow A \land r$	×		
	A, saddr	2	4	$A \leftarrow A \land (saddr)$	×		
	A, !addr16	3	8	$A \leftarrow A \land (addr16)$	×		
	A, [HL]	1	6	$A \leftarrow A \land (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×		

Remark One instruction clock cycle is one CPU clock cycle (fcPu) selected via the processor clock control register (PCC).

N	EC
---	----

Mnemonic	Operand	Bytes	Clocks	Operation	F	lags
					Z	AC CY
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×	
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×	
	A, r	2	4	$A \leftarrow A \lor r$	×	
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×	
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×	
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×	
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×	
XOR	A, #byte	2	4	$A \leftarrow A \nleftrightarrow byte$	×	
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×	
	A, r	2	4	$A \leftarrow A \nleftrightarrow r$	×	
	A, saddr	2	4	$A \leftarrow A \nleftrightarrow (saddr)$	×	
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×	
	A, [HL]	1	6	$A \leftarrow A \nleftrightarrow (HL)$	×	
	A, [HL + byte]	2	6	$A \leftarrow A \nleftrightarrow (HL + byte)$	×	
CMP	A, #byte	2	4	A – byte	×	× ×
	saddr, #byte	3	6	(saddr) – byte	×	× ×
	A, r	2	4	A – r	×	× ×
	A, saddr	2	4	A – (saddr)	×	× ×
	A, !addr16	3	8	A – (addr16)	×	× ×
	A, [HL]	1	6	A – (HL)	×	× ×
	A, [HL + byte]	2	6	A – (HL + byte)	×	× ×
ADDW	AX, #word	3	6	AX, CY \leftarrow AX + word	×	× ×
SUBW	AX, #word	3	6	AX, CY \leftarrow AX – word	×	× ×
CMPW	AX, #word	3	6	AX – word	×	× ×
INC	r	2	4	r ← r + 1	×	×
	saddr	2	4	$(saddr) \leftarrow (saddr) + 1$	×	×
DEC	r	2	4	r ← r – 1	×	×
	saddr	2	4	$(saddr) \leftarrow (saddr) - 1$	×	×
INCW	rp	1	4	rp ← rp + 1		
DECW	rp	1	4	$rp \leftarrow rp - 1$		
ROR	A, 1	1	2	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1 \text{ time}$		×
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1 \text{ time}$		×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1 \text{ time}$		×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$ time		×

Remark One instruction clock cycle is one CPU clock cycle (fcPU) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation	F	lags
						AC CY
SET1	saddr. bit	3	6	(saddr. bit) ← 1		
	sfr. bit	3	6	sfr. bit \leftarrow 1		
	A. bit	2	4	A. bit $\leftarrow 1$		
	PSW. bit	3	6	PSW. bit ← 1	×	× ×
	[HL]. bit	2	10	(HL). bit \leftarrow 1		
CLR1	saddr. bit	3	6	(saddr. bit) $\leftarrow 0$		
	sfr. bit	3	6	sfr. bit $\leftarrow 0$		
	A. bit	2	4	A. bit $\leftarrow 0$		
	PSW. bit	3	6	PSW. bit $\leftarrow 0$	×	× ×
	[HL]. bit	2	10	(HL). bit $\leftarrow 0$		
SET1	CY	1	2	CY ← 1		1
CLR1	CY	1	2	$CY \leftarrow 0$		0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$		×
CALL	!addr16	3	6	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ $PC \leftarrow addr16, SP \leftarrow SP - 2$		
CALLT	[addr5]	1	8	$(SP - 1) \leftarrow (PC + 1)_{H,} (SP - 2) \leftarrow (PC + 1)_{L,}$ $PC_{H} \leftarrow (00000000, addr5 + 1),$ $PC_{L} \leftarrow (00000000, addr5),$ $SP \leftarrow SP - 2$		
RET		1	6	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
RETI		1	8	$\begin{split} & PC_H \leftarrow (SP+1), PC_L \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ & NMIS \leftarrow 0 \end{split}$	R	RR
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$		
	rp	1	4	$(SP - 1) \leftarrow rpH, (SP - 2) \leftarrow rpL,$ $SP \leftarrow SP - 2$		
POP	PSW	1	4	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	RR
	rp	1	6	$rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$		
MOVW	SP, AX	2	8	$SP \leftarrow AX$		
	AX, SP	2	6	$AX \leftarrow SP$		
BR	!addr16	3	6	PC ← addr16		
	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$		
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$		

Remark One instruction clock cycle is one CPU clock cycle (fcPu) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation	F	lags
					Z	AC CY
BC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$		
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$		
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if Z = 1		
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if Z = 0		
ВТ	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 1		
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1		
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1		
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 1		
BF	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 0		
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0		
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0		
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0		
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0		
	C, \$addr16	2	6	$C \leftarrow C - 1$, then PC \leftarrow PC + 2 + jdisp8 if C $\neq 0$		
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if $(saddr) \neq 0$		
NOP		1	2	No Operation		
EI		3	6	IE ← 1 (Enable Interrupt)		
DI		3	6	$IE \leftarrow 0$ (Disable Interrupt)		
HALT		1	2	Set HALT Mode		
STOP		1	2	Set STOP Mode		

Remark One instruction clock cycle is one CPU clock cycle (fcPu) selected via the processor clock control register (PCC).

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit
Power supply voltage	Vdd			-0.3 to +6.5	V
	Vpp			–0.3 to +10.5	V
Input voltage	VI1	-	P00 to P03, P10 to P13, P20 to P26, P30 to P33, X1 (CL1), X2 (CL2), XT1, XT2, RESET		V
	V ₁₂	P50 to P53	N-ch open drain	–0.3 to +13	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3^{Note}	V
Output current, high	Іон	1 pin		-10	mA
		Total for all pins		-30	mA
Output current, low	lol	1 pin		30	mA
		Total for all pins	Total for all pins		mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	°C
		During flash memory programming		10 to 40	°C
Storage temperature	Tstg			-40 to +125	°C

Note 6.5 V or less

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Pin names enclosed in parentheses apply when using the μ PD78F9316.
 - 2. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

*

Main System Clock Oscillator Characteristics

Ceramic/crystal oscillation (µPD78F9306)

			(Ta = -40	to +85°C	C, Vdd = 1	.8 to 5.5 V)
Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	VPP X2 X1	Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
resonator		Oscillation stabilization time ^{Note 2}	After VDD reaches oscillation voltage range MIN.			4	ms
Crystal	IC X2 X1	Oscillation frequency ^{Note 1}		1.0		5.0	MHz
resonator	┥┥┍	Oscillation stabilization	V_{DD} = 4.5 to 5.5 V			10	ms
		time ^{Note 2}				30	ms
External	X2 X1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
clock		X1 input high-/low-level width (txH, txL)		85		500	ns
	X2 X1	X1 input frequency (fx) ^{Note 1}	V _{DD} = 2.7 to 5.5 V	1.0		5.0	MHz
		X1 input high-/low-level width (txH, txL)	V _{DD} = 2.7 to 5.5 V	85		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation stabilizes within the oscillation stabilization wait time.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

*

RC oscillation (µPD78F9316)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = 1.8 \text{ to } 5.5 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC resonator	CL1 CL2	Oscillation frequency (fcc) ^{Note 1}		2.0		4.0	MHz
		Oscillation stabilization	V _{DD} = 2.7 to 5.5 V	32			ms
		time ^{Note 2}		128			ms
External	ICL1 CL2	CL1 input frequency (fcc) ^{Note 1}		1.0		4.0	MHz
clock		CL1 input high-/low-level width (t_{XH} , t_{XL})		100		500	ns
	CL1 CL2	CL1 input frequency (fcc) ^{Note 1}	V _{DD} = 2.7 to 5.5 V	1.0		4.0	MHz
		CL1 input high-/low-level width (txн, tx∟)	V _{DD} = 2.7 to 5.5 V	100		500	ns

- **Notes 1.** Indicates only oscillator characteristics. Refer to **AC Characteristics** for instruction execution time. The error of capacitor (C) and resistor (R) is not included.
 - **2.** Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation stabilizes within the oscillation stabilization wait time.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

RC Oscillation Frequency Characteristics (T_A = -40 to +85°C)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Oscillation	fcc1	R = 11.0 kΩ,	V _{DD} = 2.7 to 5.5 V	1.5	2.0	2.5	MHz
frequency	fcc2	C = 22 pF	VDD = 1.8 to 3.6 V	0.5	2.0	2.5	MHz
	fcc3	Target: 2 MHz	V _{DD} = 1.8 to 5.5 V	0.5	2.0	2.5	MHz
	fcc4	R = 6.8 kΩ,	V _{DD} = 2.7 to 5.5 V	2.5	3.0	3.5	MHz
	fcc5	C = 22 pF	VDD = 1.8 to 3.6 V	0.75	3.0	3.5	MHz
	fcc6	Target: 3 MHz	V _{DD} = 1.8 to 5.5 V	0.75	3.0	3.5	MHz
	fcc7	R = 4.7 kΩ,	V _{DD} = 2.7 to 5.5 V	3.5	4.0	4.7	MHz
	fcc8	C = 22 pF	V _{DD} = 1.8 to 3.6 V	1.0	4.0	4.7	MHz
	fcc9	Target: 4 MHz	V _{DD} = 1.8 to 5.5 V	1.0	4.0	4.7	MHz

Remarks 1. Set RC to one of the above nine values so that the typical value of the oscillation frequency is within 2.0 to 4.0 MHz.

2. The resistor (R) and capacitor (C) error is not included.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	VPPXT1 XT2	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		time ^{Note 2}				10	
External clock	XT1 XT2	XT1 input frequency (fxT) ^{Note 1}		32		35	kHz
		XT1 input high-/low-level width (tхтн, tхть)		14.3		15.6	μs

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

 \star

 \star

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (1/4)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output current, low	Iol	1 pin					10	mA
		All pins				80	mA	
Output current, high	Іон	1 pin					-1	mA
		All pins					-15	mA
Input voltage, high	VIH1	P10 to P13		V _{DD} = 2.7 to 5.5 V	0.7Vdd		VDD	V
					0.9VDD		Vdd	V
	VIH2	P50 to	N-ch open	V _{DD} = 2.7 to 5.5 V	0.7Vdd		12	V
		P53	drain		0.9V _{DD}		12	V
	VIH3	RESET, P	00 to P03,	V _{DD} = 2.7 to 5.5 V	0.8Vdd		Vdd	V
		P20 to P26	6, P30 to P33		0.9V _{DD}		VDD	V
	VIH4	X1 (CL1),	X2 (CL2), XT1,	V _{DD} = 4.5 to 5.5 V	Vdd - 0.5		VDD	V
		XT2			Vdd - 0.1		VDD	V
Input voltage, low	VIL1	P10 to P13		V _{DD} = 2.7 to 5.5 V	0		0.3VDD	V
					0		0.1Vdd	V
	VIL2	VIL2 P50 to P53		V _{DD} = 2.7 to 5.5 V	0		0.3Vdd	V
					0		0.1Vdd	V
	VIL3 RESET, POO	,	V _{DD} = 2.7 to 5.5 V	0		0.2VDD	V	
		P20 to P26, P30 to P33			0		0.1Vdd	V
	VIL4	X1 (CL1),	X2 (CL2), XT1,	V _{DD} = 4.5 to 5.5 V	0		0.4	V
		XT2			0		0.1	V
Output voltage, high	Vон	Iон = —1 m	ıΑ	VDD = 4.5 to 5.5 V	Vdd - 1.0			V
		Іон = -100) μA	V _{DD} = 1.8 to 5.5 V	Vdd - 0.5			V
Output voltage, low	Vol1		3, P10 to P13, 6, P30 to P33	$4.5 \le V_{DD} \le 5.5 \text{ V},$ lol = 10 mA			1.0	V
				$1.8 \le V_{DD} < 4.5 V,$ Iol = 400 μ A			0.5	V
	Vol2	P50 to P53	3	$4.5 \le V_{DD} < 5.5 V$, Iol = 10 mA			1.0	V
				$1.8 \le V_{DD} < 4.5 V$, Iol = 1.6 mA			0.4	V

Remarks 1. Pin names enclosed in parentheses apply when using the μ PD78F9316.

2. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цінт	VIN = VDD	P00 to P03, P10 to P13, P20 to P26, P30 to P33, RESET			3	μA
	Ilih2		X1 (CL1), X2 (CL2), XT1, XT2			20	μΑ
	Ішнз	VIN = 12 V	P50 to P53 (N-ch open drain)			20	μΑ
Input leakage current, low		V _{IN} = 0 V	P00 to P03, P10 to P13, P20 to P26, P30 to P33, RESET			-3	μA
	ILIL2		X1 (CL1), X2 (CL2), XT1, XT2			-20	μΑ
	Ililis	-	P50 to P53 (N-ch open drain)			-3 ^{Note}	μΑ
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	V _{OUT} = 0 V				-3	μΑ
Software pull-up resistor	R1	VIN = 0 V	P00 to P03, P10 to P13, P20 to P26, P30 to P33	50	100	200	kΩ

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (2/4)

Note If P50 to P53 have been set to input mode when a read instruction is executed to read from P50 to P53, a low-level input leakage current of up to $-30 \ \mu$ A flows during only one cycle. At all other times, the maximum leakage current is $-3 \ \mu$ A.

Remarks 1. Pin names enclosed in parentheses apply when using the μ PD78F9316.

2. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

*	DC Characteristics	(T _A = -40 to +85°C,	V _{DD} = 1.8 to 5.5 V)	(3/4)
---	---------------------------	---------------------------------	---------------------------------	-------

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Power supply	DD1	5.0 MHz crys	tal oscillation	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		4.5	9	mA
current ^{Note 1}		operation mode (C1 = C2 = 22 pF)		V_{DD} = 3.0 V ±10% ^{Note 3}		1	2	mA
(Ceramic/crystal oscillation)		(01 - 02 - 2	2 pr)	V_{DD} = 2.0 V ±10% ^{Note 3}		0.65	1.5	mA
	IDD2	_	tal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		1.4	2	mA
		HALT mode (C1 = C2 = 2	2 nE)	V_{DD} = 3.0 V ±10% ^{Note 3}		0.4	0.8	mA
		(01 - 02 - 2	2 pi)	V_{DD} = 2.0 V ±10% ^{Note 3}		0.19	0.42	mA
	Idd3	32.768 kHz c	rystal	V _{DD} = 5.0 V ±10%		100	230	μA
		oscillation operation mode ^{Note 4} (C3 = C4 = 22 pF, R1 = 220 kΩ)		V _{DD} = 3.0 V ±10%		70	160	μA
				VDD = 2.0 V ±10%		58	120	μΑ
	IDD4	32.768 kHz	32.768 kHz LCD not crystal operating oscillation	V _{DD} = 5.0 V ±10%		25	65	μA
		-		VDD = 3.0 V ±10%		7	29	μA
		oscillation HALT		V _{DD} = 2.0 V ±10%		4	20	μA
		mode ^{Note 4}	LCD	V _{DD} = 5.0 V ±10%		28	70	μA
		(C3 = C4 =	operating ^{Note 5}	V _{DD} = 3.0 V ±10%		9.6	34	μA
		22 pF, R1 = 220 kΩ)		V _{DD} = 2.0 V ±10%		6	25	μA
	DD5	STOP mode	Note 6	VDD = 5.0 V ±10%		0.1	17	μA
				V _{DD} = 3.0 V ±10%		0.05	5.5	μA
				V _{DD} = 2.0 V ±10%		0.05	3.5	μA

Notes 1. The port current (including the current that flows to the on-chip pull-up resistors) is not included.

- 2. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- 3. Low-speed mode operation (when PCC is set to 02H)
- 4. When the main system clock is stopped
- 5. This is the total current that flows when the LCD controller/driver is operating (LCDON0 = 1, VAON0 = 1, LIPS0 = 1). The power supply current when the LCD is not operating (LCDON0 = 0, VAON0 = 1, LIPS0 = 0) is included in IDD2.
- 6. This is the current when the LCD booster circuit is stopped (LCDON0 = 0, VAON0 = 1).
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Power supply	DD1	4.0 MHz RC o	scillation	V_{DD} = 5.0 V ±10% ^{Note 2}		6	9	mA
current ^{Note 1}		operation mode		V_{DD} = 3.0 V ±10% ^{Note 3}		2.0	2.5	mA
(RC oscillation)		(R = 4.7 kΩ, 0	C = 22 pF)	V_{DD} = 2.0 V ±10% ^{Note 3}		1.2	1.6	mA
	IDD2	4.0 MHz RC o	scillation	V_{DD} = 5.0 V ±10% ^{Note 2}		2.5	3.5	mA
		HALT mode		V_{DD} = 3.0 V ±10% ^{Note 3}		1.5	2	mA
		(R = 4.7 kΩ, 0	C = 22 pF)	V_{DD} = 2.0 V ±10% ^{Note 3}		0.8	1.5	mA
	Іддз	32.768 kHz cr	ystal	V _{DD} = 5.0 V ±10%		100	230	μA
		oscillation operation mode ^{Note 4}	V _{DD} = 3.0 V ±10%		70	160	μA	
		(C3 = C4 = 22 pF, R1 = 220 kΩ)		V _{DD} = 2.0 V ±10%		58	120	μA
	IDD4	32.768 kHz crystal	LCD not operating	V _{DD} = 5.0 V ±10%		25	65	μA
				V _{DD} = 3.0 V ±10%		7	29	μA
		oscillation HALT		V _{DD} = 2.0 V ±10%		4	20	μA
		mode ^{Note 4}	LCD	Vdd = 5.0 V ±10%		28	70	μA
		(C3 = C4 =	operating ^{Note 5}	V _{DD} = 3.0 V ±10%		9.6	34	μA
		22 pF, R1 = 220 kΩ)		V _{DD} = 2.0 V ±10%		6	25	μA
	IDD5	STOP mode ^N	ote 6	V _{DD} = 5.0 V ±10%		0.1	17	μA
				VDD = 3.0 V ±10%		0.05	5.5	μA
				V _{DD} = 2.0 V ±10%		0.05	3.5	μA

★ DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V) (4/4)

Notes 1. The port current (including the current that flows to the on-chip pull-up resistors) is not included.

- 2. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- 3. Low-speed mode operation (when PCC is set to 02H)
- 4. When the main system clock is stopped
- 5. This is the total current that flows when the LCD controller/driver is operating (LCDON0 = 1, VAON0 = 1, LIPS0 = 1). The power supply current when the LCD is not operating (LCDON0 = 0, VAON0 = 1, LIPS0 = 0) is included in IDD2.
- 6. This is the current when the LCD booster circuit is stopped (LCDON0 = 0, VAON0 = 1).
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics

(1) Basic operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

	Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
	Cycle time (minimum	Тсч	Operating with main	V _{DD} = 2.7 to 5.5 V	0.4		8.0	μs
	instruction execution time)		system clock		1.6		8.0	μs
			Operating with subsystem	clock	114	122	125	μs
	TMI40 input frequency	fтмı	V _{DD} = 2.7 to 5.5 V		0		4	MHz
					0		275	kHz
*	TMI40 input high-/low-	tтімн,	V _{DD} = 2.7 to 5.5 V		0.1			μs
	level width	tım∟			1.8			μs
	Interrupt input high-	t inth,	INTP0 to INTP3		10			μs
	/low-level width	t intl						
	Key return input low- level width	tkrl	KR00 to KR03		10			μs
	RESET low-level width	t RSL			10			μs
	CPT20 input high-/low-	t срн,			10			μs
	level width	t CPL						

TCY VS VDD (main system clock)

(2) Serial interface 10, 20 (SIO10, SIO20) ($T_A = -40$ to +85°C, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
SCKn0 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				3200			ns
SCKn0 high-/low-level	tкнı,	V _{DD} = 2.7 to 5.5 V		tkcy1/2-50			ns
width	tĸ∟1			tkcy1/2-150			ns
SIn0 setup time	tsik1	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCKn0↑)				500			ns
SIn0 hold time	tksi1	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCKn0↑)				600			ns
Delay time from	tkso1	$R = 1 k\Omega$, $C = 100 pF^{Note}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
SCKn0↓ to SOn0 output				0		1000	ns

(a) 3-wire serial I/O mode (internal clock output)

Note R and C are the load resistance and load capacitance of the SOn0 output lines.

Remark n = 1, 2

(b) 3-wire serial I/O mode (external clock input)

Parameter	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
SCKn0 cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCKn0 high-/low-level	t кн2,	V _{DD} = 2.7 to 5.5 V		400			ns
width	tĸ∟2			1600			ns
SIn0 setup time	tsik2	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCKn0↑)				150			ns
SIn0 hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCKn0↑)				600			ns
Delay time from	tkso2	$R = 1 k\Omega$, $C = 100 pF^{Note}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
SCKn0↓ to SOn0 output				0		1000	ns

Note R and C are the load resistance and load capacitance of the SOn0 output lines.

Remark n = 1, 2

(c) UART mode (SIO20 only) (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 2.7 to 5.5 V			78125	bps
					19531	bps

(d) UART mode (SIO20 only) (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK20 cycle time	tксүз	V _{DD} = 2.7 to 5.5 V	800			ns
			3200			ns
ASCK20 high-/low- level width	tкнз, tк∟з	V _{DD} = 2.7 to 5.5 V	400			ns
			1600			ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
					9766	bps
ASCK20 rise/fall time	tr,				1	μs
	t⊧					
AC Timing Test Points (excluding X1 (CL1) and XT1 inputs)

Clock Timing

RESET Input Timing

CPT20 Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

UART mode (external clock input):

★ LCD Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage	VLCD2	c1 to c4 = 0.47 µF	GAIN = 1	0.84	1.0	1.165	V
variation range			GAIN = 0	1.26	1.5	1.74	V
Doubler output	VLCD1	c1 to c4 = 0.47 µF		2 VLCD2 - 0.1	2.0 VLCD2	2.0 VLCD2	V
Tripler output	VLCD0	c1 to c4 = 0.47 µF		3 VLCD2 - 0.15	3.0 VLCD2	3.0 VLCD2	V
Voltage boost wait time ^{Note 1}	tvawait GAIN = 0		0.5			S	
		GAIN = 1	$5.0 \leq V_{\text{DD}} \leq 5.5 \; V$	2.0			S
			$4.5 \leq V_{\text{DD}} < 5.0 \text{ V}$	1.0			S
			$1.8 \leq V_{DD} < 4.5 V$	0.5			S
LCD output voltage differential ^{Note 2} (common)	Vodc	$I_{O} = \pm 5 \ \mu A$ $I_{O} = \pm 1 \ \mu A$		0		±0.2	V
LCD output voltage differential ^{Note 2} (segment)	Vods			0		±0.2	V

- **Notes 1.** This is the wait time from when voltage boost is started (VAON0 = 1) until display is enabled (LCDON0 = 0).
 - **2.** The voltage differential is the difference between the segment and common signal output's actual and ideal output voltages.
- Remark c1: Capacitor connected between CAPH and CAPL
 - c2: Capacitor connected between VLC0 and ground
 - c3: Capacitor connected between VLc1 and ground
 - c4: Capacitor connected between VLC2 and ground

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.8		5.5	V
Release signal set time	t SREL		0			μs

Data Retention Timing

Oscillation Stabilization Wait Time (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation stabilization wait	t wait	Release by RESET		2 ¹⁵ /fx		s
time ^{Note 1} (ceramic/crystal oscillation)		Release by interrupt		Note 2		s
Oscillation stabilization wait	twait	Release by RESET		2 ⁷ /fcc		s
time (RC oscillation)		Release by interrupt		2 ⁷ /fcc		s

Notes 1. Use a resonator whose oscillation stabilizes within the oscillation stabilization wait time.

2. Selection of 2¹²/fx, 2¹⁵/fx, or 2¹⁷/fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Remarks 1. fx: Main system clock oscillation frequency (ceramic/crystal oscillation)

2. fcc: Main system clock oscillation frequency (RC oscillation)

Flash Memory Write/Erase Characteristics (T_A = 10 to 40°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Co	Conditions		TYP.	MAX.	Unit
Operating frequency	fx, fcc	V _{DD} = 2.7 to 5.5 V		1.0		5	MHz
				1.0		1.25	MHz
Write current ^{Note 1} (V⊳⊳ pin)	lodw	When VPP supply voltage = VPP1	RC oscillation During fcc = 4.0 MHz operation ^{Note 2}			9	mA
			Ceramic oscillation During fx = 5.0 MHz operation			7	mA
Write current ^{Note 1} (VPP pin)	Ippw	When VPP supply voltage = VPP1				12	mA
Erase current ^{Note 1} (Vɒ□ pin)	Idde	When VPP supply voltage = VPP1	RC oscillation During fcc = 4.0 MHz operation ^{Note 2}			9	mA
			Ceramic oscillation During fx = 5.0 MHz operation			7	mA
Erase current ^{Note 1} (VPP pin)	IPPE	When VPP supply vol	When V _{PP} supply voltage = V _{PP1}			100	mA
Unit erase time	ter			0.5	1	1	s
Total erase time	tera					20	s
Write count		Erase/write are regarded as 1 cycle				20	Times
VPP supply voltage	VPP0	In normal operation		0		0.2VDD	V
	V _{PP1}	During flash memory	programming	9.7	10.0	10.3	V

Notes 1. The port current (including the current that flows to the on-chip pull-up resistors) is not included.

2. When an external clock is input

★ 8. CHARACTERISTICS CURVES OF LCD CONTROLLER/DRIVER (REFERENCE VALUES)

(1) Characteristics curves of voltage boost stabilization time

The following shows the characteristics curves of the time from the start of voltage boost (VAON0 = 1) and the changes in the LCD output voltage (when GAIN is set as 1 (using the 3 V display panel)).

LCD Output Voltage/Voltage Boost Time

(2) Temperature characteristics of LCD output voltage

The following shows the temperature characteristics curves of LCD output voltage.

LCD Output Voltage/Temperature (When GAIN = 1)

9. PACKAGE DRAWINGS

64-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
I	0.15
J	0.8 (T.P.)
К	1.8±0.2
L	0.8±0.2
М	$0.17\substack{+0.08 \\ -0.07}$
N	0.10
Р	2.55±0.1
Q	0.1±0.1
R	5°±5°
S	2.85 MAX.
	P64GC-80-AB8-5

64-PIN PLASTIC TQFP (12x12)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.125
G	1.125
н	$0.32^{+0.06}_{-0.10}$
I	0.13
J	0.65 (T.P.)
К	1.0±0.2
L	0.5
М	$0.17\substack{+0.03\\-0.07}$
Ν	0.10
Р	1.0
Q	0.1±0.05
R	$3^{\circ + 4^{\circ}}_{-3^{\circ}}$
S	1.1±0.1
Т	0.25
U	0.6±0.15
	P64GK-65-9ET-3

★ 10. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F9306 and 78F9316 should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 10-1. Surface Mounting Type Soldering Conditions

μ PD78F9306GC-AB8: 64-pin plastic QFP (14 × 14) μ PD78F9316GC-AB8: 64-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max. Time: 3 seconds max. (per pin row)	—

Caution Do not use different soldering methods together (except for partial heating).

μ PD78F9306GK-9ET: 64-pin plastic TQFP (12 × 12) μ PD78F9316GK-9ET: 64-pin plastic TQFP (12 × 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300°C max. Time: 3 seconds max. (per pin row)	—

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DIFFERENCES BETWEEN μ PD78F9306, 78F9316 AND MASK ROM VERSIONS

The μ PD78F9306 and 78F9316 have flash memory in place of the internal ROM of the mask ROM versions. Differences between the μ PD78F9306 and 78F9316 and the mask ROM versions are shown in Table A-1.

	Part Number	Flash Memo	ory Versions	Mask ROM Versions			
Item		μPD78F9306	μPD78F9316	μPD789304	μPD789306	μPD789314	μPD789316
Internal	ROM	16 KB		8 KB	16 KB	8 KB	16 KB
memory	High-speed RAM	512 bytes	12 bytes				
	LCD display RAM	24 bytes					
Main syst	em clock	Ceramic/ crystal oscillation	RC oscillation	Ceramic/crystal oscillation RC oscillation			
IC pin		Not available		Available			
VPP pin		Available		Not available			
Pull-up re	sistors	19 (software co	ontrol: 19)	23 (software control: 19, mask option control: 4)			
Electrical specifications		Refer to the rel	evant data sheet	eet.			

Table A-1. Differences Between µPD78F9306, 78F9316 and Mask ROM Versions

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

 \star

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F9306 and 78F9316.

Language Processing Software

RA78K0S ^{Notes 1, 2, 3} Assembler package common to 78K/0S Series		Assembler package common to 78K/0S Series
	CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
t.	DF789306 ^{Notes 1, 2, 3}	Device file for μ PD789306, 789316 Subseries
	CC78K0S-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0S Series

Flash Memory Writing Tools

Flashpro III (Part No. FL-PR3 ^{Note 4} , PG-FP3)	Flash programmer dedicated to on-chip flash memory microcontroller
FA-64GC ^{Note 4}	Flash memory writing adapter for 64-pin plastic QFP (GC-AB8 type)
FA-64GK ^{Note 4}	Flash memory writing adapter for 64-pin plastic TQFP (GK-9ET type)

Debugging Tools

	IE-78K0S-NS In-circuit emulator	This is an in-circuit emulator for debugging hardware and software of application system using the 78K/0S Series. It supports the integrated debugger (ID78K0S-NS) and is used with an AC adapter, emulation probe, and interface adapter for connecting the host machine.
	IE-70000-MC-PS-B AC adapter	This is the adapter for supplying power from an AC-100 to 240 V outlet.
	IE-70000-98-IF-C Interface adapter	This adapter is needed when a PC-9800 series PC (except notebook type) is used as the host machine for the IE-78K0S-NS (supports C bus).
	IE-70000-CD-IF-A PC card interface	This PC card and interface cable are needed when a PC-9800 series notebook-type PC is used as the host machine for the IE-78K0S-NS (supports PCMCIA socket).
	IE-70000-PC-IF-C Interface adapter	This adapter is needed when an IBM PC/AT™ or compatible PC is used as the host machine for the IE-78K0S-NS (supports ISA bus).
	IE-70000-PCI-IF Interface adapter	This adapter is needed when a PC that includes a PCI bus is used as the host machine for the IE-78K0S-NS.
*	IE-789306-NS-EM1 Emulation board	This is an emulation board for emulating the peripheral hardware inherent to the device. It is used with an in-circuit emulator.
	NP-64GC ^{Note 4}	This is a board that is used to connect an in-circuit emulator to the target system. It is for a 64-pin plastic QFP (GC-AB8 type).
	NP-64GK ^{Note 4}	This is a board that is used to connect an in-circuit emulator to the target system. It is for a 64-pin plastic TQFP (GK-9ET type).
	SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series
	ID78K0S-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0S Series
*	DF789306 ^{Notes 1, 2}	Device file for μ PD789306, 789316 Subseries

Real-Time OS

MX78K0S ^{Notes 1, 2} OS for 78K/0S Series	
--	--

Notes 1. Based on PC-9800 Series (Japanese Windows)

- 2. Based on IBM PC/AT compatibles (Japanese/English Windows)
- 3. Based on HP9000 Series 700[™] (HP-UX[™]), SPARCstation[™] (SunOS[™], Solaris[™]), or NEWS[™] (NEWS-OS[™])
- 4. This product is manufactured by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-44-822-3813).

Remark The RA78K0S, CC78K0S, and SM78K0S are used in combination with the DF789306.

APPENDIX C. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document No.
μPD789304, 789306, 789314, 789316 Data Sheet	To be prepared
μPD78F9306, 78F9316 Data Sheet	This document
μPD789306, 789316 Subseries User's Manual	U14800E
78K/0S Series User's Manual Instructions	U11047E
78K/0, 78K/0S Series Application Note Flash Memory Write	U14458E

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K0S Assembler Package	Operation	U11622E
	Language	U11599E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U11816E
	Language	U11817E
SM78K0S, SM78K0 System Simulator Ver.2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver.2.10 or Later	External Part User Open Interface Specifications	U15006E
ID-78K0-NS, ID78K0S-NS Integrated Debugger Ver.2.20 or Later Windows Based	Operation	U14910E
IE-78K0S-NS In-circuit Emulator		U13549E
IE-789306-NS-EM1 Emulation Board		To be prepared

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.
78K/0S Series OS MX78K0S	Fundamental	U12938E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES —

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California

Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A. Madrid Office

Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

- The information in this document is current as of December, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).