

MOS INTEGRATED CIRCUIT μ PD78P0308Y

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P0308Y is a member of the μ PD780308Y Subseries of the 78K/0 Series, in which the on-chip mask ROM of the μ PD780308Y is replaced with a one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for system evaluation, small-scale and multiple-device production, and early development and time-to-market.

Caution The μ PD78P0308YKL-T does not maintain planned reliability when used in your systems' massproduced products. Please use only experimentally or for evaluation purposes during trial manufacture.

The details of functions are described in the user's manuals. Be sure to read the following manuals before designing.

μPD780308, 780308Y Subseries User's Manual : U11377E 78K/0 Series User's Manual Instructions : U12326E

FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Internal PROM: 60 KbytesNote
 - μPD78P0308YKL-T : Reprogrammable (ideally suited for system evaluation)
- μPD78P0308YGC, μPD78P0308YGF : One-time programmable (ideally suited for small-scale production)
- Internal high-speed RAM : 1024 bytes
- Internal expansion RAM : 1024 bytes
- LCD display RAM : 40 x 4 bits
- Supply voltage : VDD = 2.7 to 5.5 V
- Corresponding to QTOP[™] Microcontrollers (under planning)

Note The internal PROM capacity can be changed by setting the memory size switching register (IMS).

- **Remarks 1.** QTOP microcontroller is a general term for microcontrollers that incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening, and verification).
 - **2.** Refer to **1. DIFFERENCES BETWEEN THE** μ**PD78P0308Y AND MASK ROM VERSIONS** for the difference between the PROM and mask ROM versions.

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

ORDERING INFORMATION

	Part Number	Package	Internal ROM	Quality Grades
*	μPD78P0308YGC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	One-Time PROM	Standard
	μ PD78P0308YGF-3BA	100-pin plastic QFP (14 $ imes$ 20 mm)	One-Time PROM	Standard
	μ PD78P0308YKL-T	100-pin ceramic WQFN (14 $ imes$ 20 mm)	EPROM	Not applicable (for evaluation)

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

★ 78K/0 SERIES DEVELOPMENT

The following shows the 78K/0 Series product lineup. Subseries names are shown inside frames.

Note Under planning

Subseries	Function	ROM Capacity	Serial Interface		I/O	V _{DD} MIN Value
Control	μPD78078Y	48 K to 60 K	3-wire/2-wire/I ² C With automatic transmit/receive function, 3-wire	: 1 ch	88	1.8 V
	μPD78070AY	-	3-wire/UART	: 1 ch	61	2.7 V
	μPD780018AY	48 K to 60 K	With automatic transmit/receive function, 3-wire	: 1 ch	88	-
			Time division 3-wire	: 1 ch		
			I ² C bus (multi master supported)	: 1 ch		
	μPD780058Y	24 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	68	1.8 V
			With automatic transmit/receive function, 3-wire	: 1 ch		
			3-wire/Time division UART	: 1 ch		
	μPD78058FY	48 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	69	2.7 V
		40.16.1-00.16	With automatic transmit/receive function, 3-wire	: 1 ch		
	μPD78054Y	16 K to 60 K	3-wire/UART	: 1 ch		2.0 V
	μPD780034Y	8 K to 32 K	UART	: 1 ch	51	1.8 V
		-	3-wire	: 1 ch		
	μPD780024Y		I ² C bus (multi master supported)	: 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	53	
			With automatic transmit/receive function, 3-wire	: 1 ch		
	μPD78014Y	8 K to 32 K	3-wire/2-wire/SBI/I ² C	: 1 ch		2.7 V
			With automatic transmit/receive function, 3-wire	: 1 ch		
	μPD78002Y	8 K to 16 K	3-wire/2-wire/SBI/I ² C	: 1 ch		
LCD	μPD780308Y	48 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	57	2.0 V
drive			3-wire/Time division UART	: 1 ch		
			3-wire	: 1 ch		
	μPD78064Y	16 K to 32 K	3-wire/2-wire/I ² C	: 1 ch		
			3-wire/UART	: 1 ch		

The following lists the main functional differences between Y subseries products.

Remark The functions other than the serial interface are the same as those of subseries products without the suffix Y.

FUNCTION DESCRIPTION

Item	Function		
Internal memory	PROM: 60 Kbytes ^{Note}		
	• RAM		
	High-speed RAM: 1024 bytes		
	Expansion RAM: 1024 bytes		
	LCD display RAM: 40 x 4 bits		
General register	8 bits x 32 registers (8 bits x 8 registers x 4 banks)		
Minimum instruction execution time	Minimum instruction execution time variable function is integrated.		
When main system	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@ 5.0-MHz operation)		
clock is selected			
When subsystem	122 μs (@ 32.768-kHz operation)		
clock is selected			
Instruction set	16-bit operation		
	• Multiply/divide (8 bits x 8 bits, 16 bits ÷ 8 bits)		
	Bit manipulate (set, reset, test, Boolean operation)		
	BCD adjust, etc.		
I/O ports	Total : 57		
(Segment signal output pin included)	CMOS input : 2		
	CMOS input/output : 55		
A/D converter	8-bit resolution x 8 channels		
	• Supply voltage : VDD0 = VDD1 = AVREF = 2.7 to 5.5 V		
LCD Controller/driver	Segment signal output : 40 pins maximum		
	Common signal output : 4 pins maximum		
	Bias : 1/2,1/3 bias convertible		
Serial interface	3-wire serial I/O/2-wire serial I/O/I ² C bus mode selectable : 1 channel		
	3-wire serial I/O/UART mode selectable 1 channel		
	3-wire serial I/O mode : 1 channel		
Timer	16-bit timer/event counter 1 channel		
	8-bit timer/event counter : 2 channels		
	Watch timer : 1 channel		
	Watchdog timer : 1 channel		
Timer output	3 pins (14-bit PWM output enable: 1 pin)		
Clock output	19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,		
	and 5.0 MHz (@ 5.0-MHz operation with main system clock)		
	32.768 kHz (@ 32.768-kHz operation with subsystem clock)		
Buzzer output	1.2 kHz, 2.4 kHz, 4.9 kHz, and 9.8 kHz		
	(@ 5.0-MHz operation with main system clock)		

Note Internal PROM capacity can be changed with the memory size switching register (IMS).

	ľ	tem	Function	
	Vectored Maskable interrupt sources Non-maskable Software		Internal: 13, External: 6	
			Internal: 1	
			1	
	Test input		Internal: 1, External: 1	
*	Supply voltage		V _{DD} = 2.7 to 5.5 V	
*	Package		• 100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	
			• 100-pin plastic QFP (14 $ imes$ 20 mm)	
			• 100-pin ceramic WQFN (14 × 20 mm)	

PIN CONFIGURATIONS (Top View)

(1) Normal operating mode

• 100-pin plastic LQFP (fine pitch) (14 \times 14 mm) μ PD78P0308YGC-8EU

*

Cautions 1. Connect VPP pin directly to Vsso or Vss1.

2. Connect AVss pin to Vsso.

Remark When this device is used in applications where noise generated from the microcontroller should be reduced, VDD0 and VDD1 should be powered separately, and noise reduction measures should be implemented, such as connecting Vss0 and Vss1 to separate ground lines.

NEC

- 100-pin plastic QFP (14 \times 20 mm) μ PD78P0308YGF-3BA
- 100-pin ceramic WQFN (14 \times 20 mm) $\mu \text{PD78P0308YKL-T}$

- ★ Cautions 1. Connect VPP pin directly to Vss₀ or Vss₁.
 - 2. Connect AVss pin to Vsso.

Remark When this device is used in applications where noise generated from the microcontroller should be reduced, VDD0 and VDD1 should be powered separately, and noise reduction measures should be implemented, such as connecting Vss0 and Vss1 to separate ground lines.

NEC

ANIO-ANI7	: Analog Input	RxD	: Receive Data
ASCK	: Asynchronous Serial Clock	S0-S39	: Segment Output
AVREF	: Analog Reference Voltage	SB0, SB1	: Serial Bus
AVss	: Analog Ground	SCK0, SCK2, SCK3	: Serial Clock
BIAS	: LCD Power Supply Bias Control	SCL	: Serial Clock
BUZ	: Buzzer Clock	SDA0, SDA1	: Serial Data
COM0-COM3	: Common Output	SI0, SI2, SI3	: Serial Input
INTP0-INTP5	: Interrupt from Peripherals	SO0, SO2, SO3	: Serial Output
P00-P05, P07	: Port 0	TI00, TI01	: Timer Input
P10-P17	: Port 1	TI1,TI2	: Timer Input
P25-P27	: Port 2	T00-T02	: Timer Output
P30-P37	: Port 3	TxD	: Transmit Data
P70-P72	: Port 7	Vdd0, Vdd1	: Power Supply
P80-P87	: Port 8	VLC0-VLC2	: LCD Power Supply
P90-P97	: Port 9	Vpp	: Programming Power Supply
P100-P103	: Port 10	Vsso, Vss1	: Ground
P110-P117	: Port 11	X1, X2	: Crystal (Main System Clock)
PCL	: Programmable Clock	XT1, XT2	: Crystal (Subsystem Clock)
RESET	: Reset		

(2) PROM programming mode

 100-pin plastic LQFP (fine pitch) (14 × 14 mm) μPD78P0308YGC-8EU

Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

- 2. Vss: Connect to GND.
- 3. RESET: Set to low level.
- 4. Open: Leave open.

- 100-pin plastic QFP (14 × 20 mm) μPD78P0308YGF-3BA • 100-pin ceramic WQFN μPD78P0308YKL-T (L)
 A1
 A1
 A2
 A3
 A5
 A4
 A16
 A16
 A13
 A13
 A15
 A14
 A15
 A16
 A17
 A17
 A17
 A18
 A18
 A18
 A16
 A17
 A16
 A17
 A18
 A18
 A18
 A18
 A19
 A18
 A19
 A19
 A18
 A19
 A19
 A18
 A19
 A18
 A1 Ľ С С С С Ò С Ò Ò 0 Q С С С 0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 С 1 80 -0 2 C 79 -0 ()3 (L) 0 78 -0 4 0 77 -0 5 O 76 -0 Vpp 6 O 75 -0 Open O-7 -0 74 (L) O-8 73 0 VDD O-9 72 0 (L) O-10 71 0 Open 🕞 11 70 0 RESET O-12 69 0 A9 🔿 13 68 -0 (L) 🔿 14 67 -0 PGM ↔ 15 66 -0 (L) 16 65 -0 O (L) O 17 64 -0 18 O 63 -0 OE O 19 62 -0 CE O 20 61 -0 21 \cap 60 -0 22 \cap 59 -0 23 0 58 -0 24 0 57 -0 25 0 56 -0 (L) 26 0 55 -0 0 27 54 -0 0 28 53 -0 29 52 -0 0 30 51 С -0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 8 8 8 8 8 8 8 8 6 6 Ċ ç ć Ċ Ċ Ó Ċ Vod Vod Vss D0 D1 D2 D3 D5 D7 Ĵ
- Cautions 1. (L): Independently connect to Vss via a pull-down resistor.
 - 2. Vss: Connect to GND.
 - 3. **RESET**: Set to low level.
 - 4. Open: Leave open.

A0 to A16	: Address Bus	RESET	: Reset
CE	: Chip Enable	Vdd	: Power Supply
D0 to D7	: Data Bus	Vpp	: Programming Power Supply
OE	: Output Enable	Vss	: Ground
PGM	: Program		

BLOCK DIAGRAM

 \star

CONTENTS

1.	DIFFERENCES BETWEEN THE μ PD78P0308Y AND MASK ROM VERSIONS	14
2.	PIN FUNCTIONS 2.1 Pins in Normal Operating Mode 2.2 Pins in PROM Programming Mode 2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins	15 18
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	23
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	24
5.	PROM PROGRAMMING 5.1 Operating Modes 5.2 PROM Write Procedure 5.3 PROM Read Procedure	25 27
6.	PROGRAM ERASURE (µPD78P0308YKL-T ONLY)	32
7.	OPAQUE FILM ON ERASURE WINDOW (μ PD78P0308YKL-T ONLY)	32
8.	ONE-TIME PROM VERSION SCREENING	32
9.	ELECTRIC SPECIFICATIONS	33
10.	. PACKAGE DRAWINGS	57
AP	PENDIX A. DEVELOPMENT TOOLS	60
AP	PENDIX B. RELATED DOCUMENTS	66

1. DIFFERENCES BETWEEN THE μ PD78P0308Y AND MASK ROM VERSIONS

The μ PD78P0308Y is a single-chip microcontroller with an on-chip one-time PROM or with an on-chip EPROM, which has program write, erasure, and rewrite capability.

It is possible to make all the functions except for PROM specification, and mask option of LCD drive power supply split resistor, the same as those of mask ROM versions by setting the memory size switching register (IMS).

Difference between the PROM version (μ PD78P0308Y) and mask ROM versions (μ PD780306Y, 780308Y) are shown in Table 1-1.

Table 1-1. Differences between the μ PD78P0308Y and Mask ROM Versions

Item	μPD78P0308Y	Mask ROM Versions
Internal ROM configuration	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μPD780306Y: 48 Kbytes
		μPD780308Y: 60 Kbytes
Internal ROM capacity change by the	Possible ^{Note}	Impossible
memory size switching register (IMS)		
IC pin	No	Yes
VPP pin	Yes	No
Mask options of LCD drive power supply split resistor	None	Available
Electrical specifications, recommended soldering conditions		

Note The internal PROM capacity is set to 60 Kbytes by RESET input.

★ Caution There are differences in noise immunity and noise radiation between the PROM and mask ROM versions. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the set using consumer samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins (1/2)

Pin Name	Input/Output		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/output	7-bit input/output port	Input/output is specifiable	Input	INTP1/TI01
P02			bit-wise. When used as the		INTP2
P03			input port, on-chip pull-up		INTP3
P04			resistor connection can be		INTP4
P05			specified by means of software.		INTP5
P07 ^{Note 1}	Input		Input only	Input	XT1
P10-P17	Input/output	Port 1	•	Input	ANIO-ANI7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, on-chip pull-up resistor		
		connection can be spec	ified by means of software. Note 2		
P25	Input/output	Port 2		Input	SI0/SB0/SDA0
	_	3-bit input/output port			
P26		Input/output is specifiab	le bit-wise.		SO0/SB1/SDA1
P27	-	When used as the input	port, on-chip pull-up resistor		SCK0/SCL
1 21		connection can be spec	ified by means of software.		SCRU/SCL
P30	Input/output	Port 3		Input	TO0
P31		8-bit input/output port			TO1
P32		Input/output is specifiab	le bit-wise.		TO2
P33		When used as the input	port, on-chip pull-up resistor		TI1
P34]	connection can be spec	ified by means of software.		TI2
P35]				PCL
P36]				BUZ
P37					_

Notes 1. When P07/XT1 pins are used as the input ports, set bit 6 (FRC) of the processor clock control register (PCC) to 1, and be sure not to use the feedback resistor of the subsystem clock oscillator.

2. When P10/ANI0-P17/ANI7 pins are used as the analog inputs for the A/D converter, shift port 1 to input mode. The on-chip pull-up resistor is automatically disabled.

(1) Port pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
P70	Input/output	Port 7	Input	SI2/R×D
	-	3-bit input/output port		
P71		Input/output is specifiable bit-wise.		SO2/TxD
P72	-	When used as the input port, on-chip pull-up resistor		SCK2/ASCK
172		connection can be specified by means of software.		SUNZ/ASUN
P80-P87	Input/output	Port 8	Input	S39-S32
		8-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by means of software.		
		Input/output port/segment signal output function is		
		specifiable in 2-bit units by the LCD display control		
		register (LCDC).		
P90-P97	Input/output	Port 9	Input	S31-S24
		8-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by means of software.		
		Input/output port/segment signal output function is		
		specifiable in 2-bit units by the LCD display control		
		register (LCDC).		
P100-P103	Input/output	Port 10	Input	—
		4-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by means of software.		
		It is possible to directly drive LEDs.		
P110	Input/output	Port 11	Input	SI3
P111		8-bit input/output port		SO3
P112	1	Input/output is specifiable bit-wise.		SCK3
P113	1	When used as the input port, on-chip pull-up resistor		TxD
P114	1	connection can be specified by means of software.		RxD
P115-P117	1	Falling edge detection is possible.		_

(2) Non-port pins (1/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the active edge	Input	P00/TI00
INTP1		(rising edge, falling edge, or both rising and falling edges)		P01/TI01
INTP2		can be specified.		P02
INTP3				P03
INTP4				P04
INTP5				P05
SI0	Input	Serial interface serial data input.	Input	P25/SB0/SDA0
SI2				P70/RxD
SI3				P110
SO0	Output	Serial interface serial data output.	Input	P26/SB1/SDA1
SO2				P71/TxD
SO3				P111
SB0	Input/output	Serial interface serial data input/output.	Input	P25/SI0/SDA0
SB1				P26/SO0/SDA1
SDA0				P25/SI0/SB0
SDA1				P26/SO0/SB1
SCK0	Input/output	Serial interface serial clock input/output.	Input	P27/SCL
SCK2				P72/ASCK
SCK3				P112
SCL				P27/SCK0
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2, P114
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2, P113
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00).	-	P01/INTP1
TI1		External count clock input to 8-bit timer (TM1).	-	P33
TI2		External count clock input to 8-bit timer (TM2).	-	P34
TO0	Output	16-bit timer (TM0) output (also used for 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.	-	P32
PCL	Output	Clock output (for main system clock, subsystem clock	Input	P35
		trimming).		
BUZ	Output	Buzzer output.	Input	P36
S0-S23	Output	LCD controller/driver segment signal output.	Output	_
S24-S31			Input	P97-P90
S32-S39				P87-P80
COM0-COM3	Output	LCD controller/driver common signal output.	Output	
VLC0-VLC2		LCD drive voltage.	· -	
BIAS		LCD drive power supply.	_	_

 \star

(2) Non-port pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
ANIO-ANI7	Input	A/D converter analog input.	Input	P10-P17
AVref	Input	A/D converter reference voltage input	—	—
		(also used for analog input).		
AVss	—	A/D converter ground potential. Set to the same potential as Vsso.	—	—
RESET	Input	System reset input.	—	—
X1	Input	Crystal resonator connection for main system clock	—	—
X2	_	oscillation.	—	
XT1	Input	Crystal resonator connection for subsystem clock	Input	P07
XT2	_	oscillation.	—	
Vddo	—	Positive power supply for ports.	—	—
Vsso	_	Ground potential for ports.	—	—
Vdd1	—	Positive power supply (except for ports and analog).	—	—
Vss1	—	Ground potential (except for ports and analog).	—	—
Vpp	—	High voltage application in program write/verify mode.	—	—
		Connect directly to $V_{\mbox{\scriptsize SS0}}$ or $V_{\mbox{\scriptsize SS1}}$ in normal operating mode.		

2.2 Pins in PROM Programming Mode

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting.
		When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the $\overline{\text{RESET}}$
		pin, this chip is set in the PROM programming mode.
Vpp	Input	PROM programming mode setting and high voltage application during program write/verification.
A0-A16	Input	Address bus.
D0-D7	Input/output	Data bus.
CE	Input	PROM enable input/program pulse input.
ŌĒ	Input	Read strobe input to PROM.
PGM	Input	Program/program inhibit input in PROM programming mode.
Vdd	_	Positive power supply.
Vss	_	Ground potential.

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vsso.
P01/INTP1/TI01	8-C	Input/output	Independently connect to Vsso via a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5	_		
P07/XT1	16	Input	Connect to VDD0.
P10/ANI0-P17/ANI7	11-B	Input/output	Independently connect to VDD0 or VSS0 via
P25/SI0/SB0/SDA0	10-B		a resistor.
P26/SO0/SB1/SDA1	_		
P27/SCK0/SCL	_		
P30/TO0	5-H	_	
P31/TO1			
P32/TO2			
P33/TI1	8-C	_	
P34/TI2			
P35/PCL	5-H		
P36/BUZ			
P37			
P70/SI2/RxD	8-C	_	
P71/SO2/TxD	5-H	_	
P72/SCK2/ASCK	8-C	_	
P80/S39-P87/S32	17-C		
P90/S31-P97/S24			
P100-P103	5-H		
P110/SI3	8-C		Independently connect to VDD0 via
P111/SO3			a resistor.
P112/SCK3			
P113/TxD			
P114/RxD			
P115-P117			
S0-S23	17-B	Output	Leave open.
COM0-COM3	18-A	7	

Table 2-1. Type of Input/Output Circuit of Each Pin (1/2)

 \star

Pin Name	Input/Output	Input/Output	Recommended Connection for Unused Pins
	Circuit Type		
VLC0-VLC2	—	—	Leave open.
BIAS			
RESET	2	Input	—
XT2	16	—	Leave open.
AVREF	—	—	Connect to Vsso.
AVss			
Vpp			Connect directly to Vsso or Vss1.

Table 2-1. Type of Input/Output Circuit of Each Pin (2/2)

20

Figure 2-1. List of Pin Input/Output Circuits (1/2)

Figure 2-1. List of Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory map as that of the mask ROM versions with a different internal memory (ROM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Table 3-1 shows the setting values of IMS that make the memory mapping the same as that of the mask ROM version.

Table 3-1. Memory Size Switching Register Setting V	Values
---	--------

Target Mask ROM Versions	IMS Setting Value
μPD780306Y	ССН
μPD780308Y	CFH

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to set the internal expansion RAM capacity by software. By setting this internal expansion RAM size switching register (IXS), it is possible to get the same memory map as that of the mask ROM versions with a different internal expansion RAM capacity.

IXS is set with an 8-bit memory manipulation instruction.

RESET input sets IXS to 0AH.

Table 4-1 shows the setting values of IXS that make the memory mapping the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Value
μPD780306Y	0AH
μPD780308Y	

5. PROM PROGRAMMING

The μ PD78P0308Y has an on-chip 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the VPP and RESET pins. For the connection of unused pins, refer to "**PIN CONFIGURA-TIONS (2) PROM programming mode.**"

Caution Programs must be written in addresses 0000H to EFFFH (The last address EFFFH must be specified).

They cannot be written by a PROM programmer that cannot specify the write address.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

	Pin	RESET	Vpp	Vdd	CE	ŌĒ	PGM	D0-D7
Operating Mode								
Page data latch		L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write					Н	Н	L	High-impedance
Byte write					L	Н	L	Data input
Program verify					L	L	Н	Data output
Program inhibit					×	Н	Н	High-impedance
					×	L	L	
Read			+5 V	+5 V	L	L	Н	Data output
Output disable					L	Н	×	High-impedance
Standby					н	×	×	High-impedance

Table 5-1. Operating Modes of PROM Programming

 \times : L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P0308Ys are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set. In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overrightarrow{PGM} pin with $\overrightarrow{CE} = H$, $\overrightarrow{OE} = H$. Then, program verification can be performed, if $\overrightarrow{CE} = L$, $\overrightarrow{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X times (X \leq 10) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X times (X \leq 10) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly after the write.

(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin, and D0-D7 pins of multiple μ PD78P0308Ys are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device whose \overline{PGM} pin is driven high.

5.2 PROM Write Procedure

Figure 5-1. Page Program Mode Flow Chart

G = Start address

N = Program last address

Figure 5-2. Page Program Mode Timing

G = Start address

N = Program last address

Figure 5-4. Byte Program Mode Timing

- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of \pm 12.5 V to VPP may have an adverse effect on reliability.

5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0-D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (2) PROM programming mode".
- (2) Supply +5 V to the V_DD and V_PP pins.
- (3) Input address of data to be read into the A0-A16 pins.
- (4) Read mode
- (5) Output data to D0-D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. PROGRAM ERASURE (µPD78P0308YKL-T ONLY)

The μ PD78P0308YKL-T is capable of erasing (FFH) the data written in a program memory and rewriting.

To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm. Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the programmed data is as follows:

- UV intensity × erasing time : 30 W s/cm² or more
- Erasure time: 40 min. or more (When a UV lamp of 12 mW/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

7. OPAQUE FILM ON ERASURE WINDOW (µPD78P0308YKL-T ONLY)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

8. ONE-TIME PROM VERSION SCREENING

The one-time PROM version (μ PD78P0308YGC-8EU and 78P0308YGF-3BA) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125°C	24 hours

NEC offers for an additional fee service from one-time PROM writing to marking, screening, and verify for products designated as "QTOP microcontroller". This additional fee service is being planned for µPD78P0308Y. Please contact an NEC sales representative for details.

***** 9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C)

Parameter	Symbol	-	Test Conditions		Ratings	Unit	
Supply voltage	Vdd				-0.3 to +7.0	V	
	Vpp				-0.3 to +13.5	V	
	AVREF				-0.3 to VDD + 0.3	V	
	AVss				-0.3 to +0.3	V	
Input voltage	VI1	P00-P05, P07, P	210-P17, P25-P2	7, P30-P37,	-0.3 to VDD + 0.3	V	
		P70-P72, P80-P	87, P90-P97, P1	00-P103,			
		P110-P117, X1,	X2, XT2, RESET	Ē			
	V _{I2}	A9	PROM Pro	graming mode	-0.3 to +13.5	V	
Output Voltage	Vo				-0.3 to VDD + 0.3	V	
Analog input voltage	Van	P10-P17	Analog input pin		$AVss-0.3$ to $AV\ensuremath{REF}$ + 0.3	V	
Output current, high	Іон	1 pin Total for P01-P05, P10-P17, P25-P27, P70-P72,		-10	mA		
				-15	mA		
		P110-P117 Total for P30-P37, P80-P87, P90-P97, P100-P117					
					-15	mA	
Output current, low	lol	1 pin Peak value		30	mA		
				r.m.s. value	15 ^{Note}	mA	
		Total for P01-P05, P10-P17, Peak value		Total for P01-P05, P10-P17, Peak value 6		60	mA
		P110-P117		r.m.s. value	40 ^{Note}	mA	
		Total for P30-P3	7, P100-P103	Peak value	140	mA	
				r.m.s. value	100 ^{Note}	mA	
		Total for P25-P2	7, P70-P72,	Peak value	50	mA	
		P80-P87, P90-P	97	r.m.s. value	20 ^{Note}	mA	
Operating ambient temperature	TA				-40 to +85	°C	
Storage temperature	Tstg				-65 to +150	°C	

Note The root mean square (r.m.s.) value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

- Caution The product quality may be damaged even if a value of only one of the above parameters exceeds the absolute maximum rating or any value exceeds the absolute maximum rating for an instant. That is, the absolute maximum rating is a rating value which may cause a product to be damaged physically. The absolute maximum rating values must therefore be observed in using the product.
- Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

CAPACITANCE (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned			15	pF
I/O capacitance	Сю	to 0 V.			15	pF

Resonator	Recommended circuit	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	VPP X2 X1 R1 ≩ III	Oscillation frequency (fx) ^{Note 1}	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	After VDD reaches oscil- lation voltage range MIN.			4	ms
Crystal resonator	VPP X2 X1 R1 ≩ III	Oscillation frequency (fx) ^{Note 1}		1		5	MHz
		Oscillation	V _{DD} = 4.5 to 5.5 V			10	ms
		stabilization time ^{Note 2}				30	
External clock	X2 X1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
	μPD74HCU04Å	X1 input high-/low-level width (txH, txL)		85		500	ns

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground it to the ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. If the main system clock oscillator is operated by the subsystem clock when the main system clock is stopped, reswitching to the main system clock should be performed after the oscillation stabilization time has been obtained by the program.

Resonator **Recommended Circuit** Parameter **Test Conditions** MIN. TYP. MAX. Unit Crystal resonator Oscillation frequency VPP XT1 XT2 32 32.768 35 kH7 (fxT)Note 1 R2 1.2 $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ 2 s Oscillation stabilization timeNote 2 10 External clock XT1 input frequency 32 100 kHz XT2 (fxT)Note 1 5 15 µPD74HCU04 μs XT1 input high-/low-level width (txTH/txTL)

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD has reached the minimum oscillation voltage range.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.
- 2. The subsystem clock oscillator is designed as a low-amplification circuit to provide low consumption current, causing misoperation due to noise more frequently than the main system clock oscillator. Special care should therefore be taken regarding the wiring method when the subsystem clock is used.

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
Input voltage,	VIH1	P10-P17, P30-P32,		0.7Vdd		Vdd	V
high		P35-P37, P80-P87,					
		P90-P97, P100-P103					
	VIH2	P00-P05, P25-P27,		0.8Vdd		Vdd	V
		P33, P34, P70-P72,					
		P110-P117, RESET					
	Vінз	X1, X2		Vdd - 0.5		Vdd	V
	VIH4	XT1/P07, XT2	$4.5 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.8Vdd		Vdd	V
			$2.7 \leq V_{DD} < 4.5 V$	0.9Vdd		Vdd	V
Input voltage,	VIL1	P10-P17, P30-P32,		0		0.3Vdd	V
low		P35-P37, P80-P87,					
		P90-P97, P100-P103					
	VIL2	P00-P05, P25-P27,		0		0.2Vdd	V
		P33, P34, P70-P72,					
		P110-P117, RESET					
	VIL3	X1, X2		0		0.4	V
	VIL4	XT1/P07, XT2	$4.5 \le V_{DD} \le 5.5 V$	0		0.2Vdd	V
			$2.7 \leq V_{DD} < 4.5 V$	0		0.1Vdd	V
Output voltage,	Vон	V _{DD} = 4.5 to 5.5 V Iон = -	-1 mA	Vdd - 1.0		Vdd	V
high		Іон = -100 <i>µ</i> А		Vdd - 0.5		Vdd	V
Output voltage,	Vol1	P100-P103	V _{DD} = 4.5 to 5.5 V,		0.4	2.0	V
low			lo∟ = 15 mA				
		P01-P05, P10-P17,	V _{DD} = 4.5 to 5.5 V,			0.4	V
		P25-P27, P30-P37,	lo∟ = 1.6 mA				
		P70-P72, P80-P87,					
		P90-P97, P110-P117					
	Vol2	SB0, SB1, SCK0	V _{DD} = 4.5 to 5.5 V,			0.2Vdd	V
			open-drain,				
			pulled up (R = 1 k Ω)				
	Vol3	Ιοι = 400 μΑ	1			0.5	V

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as the those of port pins.
DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні		P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117			3	μA
	ILIH2		X1, X2, XT1/P07, XT2			20	μΑ
Input leakage current, low	ILIL1		V _{IN} = 0 V P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117			-3	μA
	Ілна		X1, X2, XT1/P07, XT2			-20	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Software pull-up resistor	R	V _{IN} = 0 V	P01-P05, P10-P17, P25- P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117	15	40	90	kΩ
Supply current ^{Note 1}	IDD1	5.00-MHz crystal oscillation (fxx = 2.5 MHz) ^{Note 2}	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 5}}$		5	15	mA
current		operating mode	$V_{DD} = 3.0 \ V \pm 10\%^{Note 6}$		0.7	2.1	mA
		5.00-MHz crystal oscillation (i	$f_{XX} = V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 5}}$		9	27	mA
		5.0 MHz) ^{Note 3} operating mod	de V _{DD} = 3.0 V ±10% ^{Note 6}		1	3	mA
	IDD2	5.00-MHz crystal oscillation (fr = 2.5 MHz) ^{Note 2}	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.4	4.2	mA
		HALT mode	V _{DD} = 3.0 V ±10%		500	1500	μA
		5.00-MHz crystal oscillation	(fxx V _{DD} = 5.0 V ±10%		1.6	4.8	mA
		= 5.0 MHz) ^{Note 3} HALT mode	VDD = 3.0 V ±10%		650	1950	μA
	Ірдз	32.768-kHz crystal oscillation	n V _{DD} = 5.0 V ±10%		135	270	μΑ
		operating mode ^{Note 4}	VDD = 3.0 V ±10%		95	190	μA
	Idd4	32.768-kHz crystal oscillatio	n V _{DD} = 5.0 V ±10%		25	55	μA
		HALT mode ^{Note 4}	VDD = 3.0 V ±10%		5	15	μA
	IDD5	XT1 = V _{DD}	V _{DD} = 5.0 V ±10%		1	30	μA
		STOP mode When feedback resistor is connect	cted VDD = 3.0 V ±10%		0.5	10	μΑ
	IDD6	XT1 = VDD	Vdd = 5.0 V ±10%		0.1	30	μΑ
		STOP mode When feedback resistor is disconne	ected V _{DD} = 3.0 V ±10%		0.05	10	μA

Notes 1. Current flowing into V_{DD} pin. Not including the current flowing into A/D converter, on-chip pull-up resistors, or LCD split resistors.

- 2. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)
- **3.** Main system clock fxx = fx operation (when OSMS is set to 01H)
- 4. When the main system clock is stopped.
- 5. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- 6. Low-speed mode operation (when PCC is set to 04H)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as the those of port pins.

LCD CONTROLLER/DRIVER CHARACTERISTICS (AT NORMAL OPERATION)

(1) Static Display Mode ($T_A = -10$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.7		Vdd	V
LCD output voltage	Vodc	$I_0 = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)							
LCD output voltage	Vods	$Io = \pm 1 \ \mu A$		0		±0.2	V
deviation ^{Note} (segment)							

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (VLCDn; n = 0, 1, 2).

(2) 1/3 Bias Method (T_A = -10 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.7		Vdd	V
LCD output voltage	Vodc	$I_0 = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$V_{LCD1} = V_{LCD} \times 2/3$				
LCD output voltage	Vods	$Io = \pm 1 \ \mu A$	$V_{LCD2} = V_{LCD} \times 1/3$	0		±0.2	V
deviation ^{Note} (segment)							

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn} ; n = 0, 1, 2).

(3) 1/2 Bias Method (T_A = -10 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.7		Vdd	V
LCD output voltage	Vodc	$Io = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$V_{LCD1} = V_{LCD} \times 1/2$				
LCD output voltage	Vods	$Io = \pm 1 \ \mu A$	VLCD2 = VLCD1	0		±0.2	V
deviation ^{Note} (segment)							

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn} ; n = 0, 1, 2).

Caution Characteristics at low-voltage operation are undecided.

AC CHARACTERISTICS

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating on main system clock (fxx =	2.5 MHz) ^{Note 1}	0.8		64	μs
(Min. instruction		Operating on main system clock	$4.5 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.4		32	μs
execution time)		$(f_{XX} = 5.0 \text{ MHz})^{\text{Note 2}}$	$2.7 \leq V_{\text{DD}} < 4.5 \text{ V}$	0.8		32	μs
		Operating on subsystem clock	40 ^{Note 3}	122	125	μs	
TI00 input high/	t тіноо,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$		2/fsam+0.1 ^{Note 4}			μs
low-level width	t⊤iLoo	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		2/fsam+0.2 ^{Note 4}			μs
TI01 input high/	t тіно1,			10			μs
low-level width	t⊤ilo1			20			μs
TI1, TI2 input	f _{TI1}	V _{DD} = 4.5 to 5.5 V		0		4	MHz
frequency				0		275	kHz
TI1, TI2 input	t⊤iH1,	V _{DD} = 4.5 to 5.5 V		100			ns
high/low-level width	t⊤i∟1			1.8			μs
Interrupt request	tinth,	INTP0	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	2/fsam+0.1 ^{Note 4}			μs
input high/low-	t intl		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	2/fsam+0.2 ^{Note 4}			μs
level width		INTP1-INTP5, P110-P117		10			μs
RESET low-level width	trsl			10			μs

(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Notes 1. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)

2. Main system clock fxx = fx operation (when OSMS is set to 01H)

3. This is the value when the external clock is used. The value is 114 μ s (min.) when the crystal resonator is used.

4. In combination with bits 0 (SCS0) and 1 (SCS1) of the sampling clock select register (SCS), selection of fsam is possible between fxx/2^{N+1}, fxx/32, fxx/64, and fxx/128 (when N = 0 to 4).

(2) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
SCK0 high/low-level width	tкнı,	V _{DD} = 4.5 to 5.5 V	tксү1/2 — 50			ns
	tĸ∟1		tксү1/2 – 100			ns
SI0 setup time (to SCK0↑)	tsik1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
SI0 hold time (from SCK0↑)	tksi1		400			ns
SO0 output delay time	tkso1	C = 100 pF ^{Note}			300	ns
from SCK0↓						

Note C is the load capacitance of the SCK0 and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
SCK0 high/low-level width	tкн2,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
	tĸ∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
SI0 setup time (to SCK0↑)	tsik2		100			ns
SI0 hold time (from SCK0↑)	tksi2		400			ns
SO0 output delay time from SCK0↓	tĸso2	C = 100 pF ^{Note}			300	ns
SCK0 rise, fall time	tr2,				1000	ns
	tF2					

Note C is the load capacitance of the SO0 output line.

(iii) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Tes	Test Conditions		TYP.	MAX.	Unit
SCK0 cycle time	tксүз	R = 1 kΩ,		1600			ns
SCK0 high-level width	tкнз	$C = 100 \text{ pF}^{Note}$		tксүз/2 – 160			ns
SCK0 low-level width	tкьз		VDD = 4.5 to 5.5 V	tксүз/2 – 50			ns
				tксүз/2 – 100			ns
SB0, SB1 setup time	tsıкз		$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	300			ns
(to SCK0↑)			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	350			ns
SB0, SB1 hold time (from SCK0↑)	tหรเช			600			ns
SB0, SB1 output delay time from SCK0↓	tкsoз					300	ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

Parameter	Symbol	Te	st Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү4			1600			ns
SCK0 high-level width	tкн4			650			ns
SCK0 low-level width	tĸ∟4			800			ns
SB0, SB1 setup time (to SCK0↑)	tsıĸ4			100			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tксү4/2			ns
SB0, SB1 output delay time from $\overline{\text{SCK0}}\downarrow$	tkso4	R = 1 kΩ, C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V	0		300 500	ns ns
SCK0 rise, fall time	tr4, tf4					1000	ns

(iv) 2-wire serial I/O mode (SCK0... External clock input)

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксү5	$R = 1 k\Omega$,		10			μs
SCL high-level width	tкн5	C = 100 pF ^{Note}		tксү5 – 160			ns
SCL low-level width	tĸls	-	VDD = 4.5 to 5.5 V	tксү₅ — 50			ns
				tксү5 – 100			ns
SDA0, SDA1 setup time (to SCL↑)	tsik5			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi5			0			ns
SDA0, SDA1 output	tkso5	-	VDD = 4.5 to 5.5 V	0		300	ns
delay time (from SCL↓)				0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns

(v) I²C bus mode (SCL... Internal clock output)

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.

(vi) I²C bus mode (SCL... External clock input)

Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксү6			1000			ns
SCL high/low-level width	tкн6, tкL6			400			ns
SDA0, SDA1 setup time (to SCL↑)	tsik6			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi6			0			ns
SDA0, SDA1 output	tkso6	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
delay time (from SCL↓)		$C = 100 \text{ pF}^{Note}$		0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns
SCL rise, fall time	tre, tre					1000	ns

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.

(b) Serial interface channel 2

(i) 3-wire serial I/O mode (SCK2... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy7	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
SCK2 high/low-level width	t кн7,	V _{DD} = 4.5 to 5.5 V	tксү7/2 – 50			ns
	tĸL7		tксү7/2 – 100			ns
SI2 setup time (to SCK2↑)	tsık7	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
SI2 hold time (from SCK2↑)	tksi7		400			ns
SO2 output delay time from SCK2↓	tkso7	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK2}$ and SO2 output lines.

(ii) 3-wire serial I/O mode (SCK2... External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	t ксу8	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
SCK2 high/low-level width	tкнв,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	400			ns
	tĸl8	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
SI2 setup time (to SCK2↑)	tsik8		100			ns
SI2 hold time (from SCK2↑)	tksi8		400			ns
SO2 output delay time from $\overline{\text{SCK2}}\downarrow$	tkso8	C = 100 pF ^{Note}			300	ns
SCK2 rise, fall time	trs,				1000	ns
	tF8					

Note C is the load capacitance of the SO2 output line.

(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			78125	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			39063	bps

(iv) UART mode (External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүэ	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
ASCK high/low-level	tкнэ,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	400			ns
width	tĸ∟9	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
Transfer rate		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			19531	bps
ASCK rise, fall time	t _{R9} ,				1000	ns
	tF9					

(c) Serial interface channel 3

Undecided

AC Timing Test Point (Excluding X1, XT1 Inputs)

Serial Transfer Timing

3-wire serial I/O mode:

I²C bus mode:

UART mode:

A/D Converter (T_A = -40 to +85°C, AV_{DD} = V_{DD} = AV_{REF} = 2.7 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note 1}					±0.6	%
Conversion time	tconv		19.1		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.7		Vdd	V
AVREF-AVSS resistance	RAIREF	When not operating A/D conversion	4	14		kΩ
AVREF current	AIREF	When operating A/D conversionNote 2		2.0	4.0	mA
		When not operating A/D conversion ^{Note 3}		0.5	1.5	mA

Notes 1. Quantization error ($\pm 1/2$ LSB) is not included. This is expressed in proportion to the full-scale value.

2. Indicates current flowing to AVREF pin when the CS bit of the A/D converter mode register (ADM) is 1.

3. Indicates current flowing to AVREF pin when the CS bit of ADM is 0.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (T_A = -40 to +85°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.8		5.5	V
Data retention power supply current	Idddr	VDDDR = 1.8 V Subsystem clock stop and feed-back resistor disconnected.		0.1	10	μA
Release signal set time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET Release by interrupt request		2 ¹⁷ /fx Note		ms ms

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS), selection of 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx is possible.

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

Interrupt Request Input Timing

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM Write Mode (T_A = 25 \pm 5°C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	Vін		0.7Vdd		Vdd	V
Input voltage low	Vil	VIL		0		0.3Vdd	V
Output voltage high	Vон	Vон	lон = −1 mA	Vdd - 1.0			V
Output voltage low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μA
VPP supply voltage	Vpp	Vpp		12.2	12.5	12.8	V
VDD supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	Ірр	IPP	PGM = VIL			50	mA
VDD supply current	loo	Icc				50	mA

(2) PROM Read Mode (TA = 25 \pm 5°C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	Vih		0.7Vdd		Vdd	V
Input voltage low	Vil	VIL		0		0.3Vdd	V
Output voltage high	Voh1	Vон1	Іон = -1 mA	Vdd - 1.0			V
	Vон2	Vон2	Іон = -100 μА	Vdd - 0.5			V
Output voltage low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	Iu	Lu	$0 \leq V_{IN} \leq V_{DD}$	-10		+10	μA
Output leakage current	Ilo	Ilo	$0 \le V_{OUT} \le V_{DD}, \ \overline{OE} = V_{IH}$	-10		+10	μA
VPP supply voltage	Vpp	Vpp		Vdd - 0.6	Vdd	Vdd + 0.6	V
VDD supply voltage	Vdd	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	Ірр	Vpp = Vdd			100	μA
VDD supply current	lod	ICCA1	$\overline{CE} = VIL, VIN = VIH$			50	mA

Note Corresponding μ PD27C1001A symbol.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (T_A = 25 \pm 5°C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{OE}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{OE}\downarrow$)	tos	tos		2			μs
Address hold time (from \overline{OE}^{\uparrow})	tан	tан		2			μs
	t AHL	t AHL		2			μs
	tанv	tанv		0			μs
Input data hold time (from OE1)	tон	tон		2			μs
Data output float delay time from \overline{OE}^\uparrow	t _{DF}	tdf		0		250	ns
V_{PP} setup time (to $\overline{OE}\downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE}\downarrow$)	tvds	tvcs		1.0		250	ms
Program pulse width	tew	tew		0.095		0.105	ms
Valid data delay time from $\overline{OE} \downarrow$	toe	toe				1	μs
OE pulse width during data latching	t∟w	t∟w		1			μs
PGM setup time	t PGMS	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{PGM}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{PGM}\downarrow$)	tos	tos		2			μs
Address hold time (from \overline{OE}^{\uparrow})	tан	tан		2			μs
Input data hold time (from \overline{PGM})	tон	tон		2			μs
Data output float delay time from $\overline{OE} \uparrow$	t DF	tdf		0		250	ns
V_{PP} setup time (to $\overline{PGM}\downarrow$)	tvps	tvps		1.0			ms
VDD setup time (to $\overline{PGM}\downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tew	tew		0.095		0.105	ms
Valid data delay time from $\overline{OE}\downarrow$	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding *µ*PD27C1001A symbol

(2) PROM Read Mode (T_A = 25 \pm 5°C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time from address	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
Data output delay time from $\overline{CE}\downarrow$	tce	tce	OE = VIL			800	ns
Data output delay time from $\overline{OE} \downarrow$	toe	toe	CE = VIL			200	ns
Data output float delay time from \overline{OE}^\uparrow	t DF	t DF	CE = VIL	0		60	ns
Data hold time from address	toн	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

Note Corresponding *µ*PD27C1001A symbol

(3) PROM Programming Mode Setting ($T_A = 25^{\circ}C$, Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programing mode setup time	tsма		10			μs

PROM Write Mode Timing (Page Program Mode)

PROM Write Mode Timing (Byte Program Mode)

- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of ±12.5 V to VPP may have an adverse effect on reliability.

PROM Read Mode Timing

- **Notes** 1. If you want to read within the tacc range, make the \overline{OE} input delay time from the fall of \overline{CE} the maximum of tacc toe.
 - 2. top is the time from when either \overline{OE} or \overline{CE} first reaches VIH.

PROM Programming Mode Setting Timing

10. PACKAGE DRAWINGS

* 100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	16.00±0.20	0.630±0.008
В	14.00±0.20	0.551 +0.009 -0.008
С	14.00±0.20	$0.551\substack{+0.009\\-0.008}$
D	16.00±0.20	0.630±0.008
F	1.00	0.039
G	1.00	0.039
н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
К	1.00±0.20	0.039+0.009 -0.008
L	0.50±0.20	0.020+0.008 -0.009
М	$0.17^{+0.03}_{-0.07}$	0.007+0.001 -0.003
N	0.08	0.003
Р	1.40±0.05	0.055±0.002
Q	0.10±0.05	0.004±0.002
R	3°+7° -3°	3° ^{+7°} -3°
S	1.60 MAX.	0.063 MAX.
		S100GC-50-8EU

100PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
к	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7±0.1	$0.106\substack{+0.005\\-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
	F	100GF-65-3BA1-3

100 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

		X100KW-65A-1
ITEM	MILLIMETERS	INCHES
А	20.6±0.4	0.811±0.016
В	19.0	0.748
С	13.8	0.543
D	14.6±0.4	0.575±0.016
Е	1.94	0.076
F	2.14	0.084
G	3.5 MAX,	0.138 MAX.
н	0.45±0.10	$0.018\substack{+0.004\\-0.005}$
Ι	0.06	0.003
J	0.65	0.026
к	1.0±0.2	0.039 ^{+0.009} _{-0.008}
Q	C 0.3	C 0.012
R	0.875	0.034
S	1.125	0.044
Т	R 3.17	R 0.125
U	12.0	0.472
W	0.75±0.2	0.030 ^{+0.008} 0.009
Z	0.10	0.004

***** APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD78P0308Y.

Also refer to (5) Precautions in Using Development Tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series products
CC78K/0	C compiler package common to 78K/0 Series products
DF780308	Device file common to μ PD780308 Subseries products (part number: μ SxxxxDF78064)
CC78K/0-L	C compiler library source file common to 78K/0 Series products

(2) PROM Write Tools

PG-1500	PROM programmer
PA-78P0308GC	Programmer adapter connected to the PG-1500
PA-78P0308GF	
PA-78P0308KL-T	
PG-1500 Controller	Control program for the PG-1500

(3) Debugging Tools

• When using the IE-78K0-NS as an in-circuit emulator

IE-78K0-NS ^{Note}	In-circuit emulator common to 78K/0 Series products
IE-70000-MC-PS-B	Power supply unit for the IE-78K0-NS
IE-70000-98-IF-C ^{Note}	Interface adapter when a PC-9800 series PC (excluding notebook-type PCs) is used as
	the host machine
IE-70000-CD-IF ^{Note}	PC card and interface cable when a PC-9800 series notebook-type PC is used as the
	host machine
IE-70000-PC-IF-C ^{Note}	Interface adapter when an IBM PC/AT [™] or its compatible is used as the host machine
IE-780308-NS-EM1 ^{Note}	Emulation board common to μ PD780308 Subseries products
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC with the target system board prepared
	for mounting a 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on the target system board prepared for 100-pin plastic QFP (GF-3BA type)
ID78K0-NS ^{Note}	Integrated debugger for the IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series products
DF780308	Device file common to μ PD780308 Subseries products (part number: μ SxxxxDF78064)

Note Under development

• When using the IE-78001-R-A as an in-circuit emulator

IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 Series products
IE-70000-98-IF-B	Interface adapter when a PC-9800 series PC (excluding notebook-type PCs) is used as
IE-70000-98-IF-C ^{Note}	the host machine
IE-70000-PC-IF-B	Interface adapter when an IBM PC/AT TM or its compatible is used as the host machine
IE-70000-PC-IF-C ^{Note}	
IE-78000-R-SV3	Interface adapter and cable when an EWS is used as the host machine
IE-780308-NS-EM1 ^{Note}	Emulation board common to μ PD780308 Subseries products
IE-780308-R-EM	
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board required when the IE-780308-NS-EM1 is used in the
	IE-78001-R-A
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the EP-78064GC-R with the target system board prepared
	for mounting a 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on the target system board prepared for 100-pin plastic QFP
	(GF-3BA type)
ID78K0	Integrated debugger for the IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series products
DF780308	Device file common to µPD780308 Subseries products (part number: µSxxxxDF78064)

Note Under development

(4) Real-Time OS

RX78K/0	Real-time OS for 78K/0 Series products	
MX78K0	OS for 78K/0 Series products	

(5) Precautions in Using Development Tools

- The package name of the DF780308 is DF78064.
- Use the ID78K0-NS, ID78K0, and SM78K0 in combination with the DF780308.
- Use the CC78K/0 and RX78K/0 in combination with the RA78K/0 and DF780308.
- The NP-100GC and NP-100GF are products of Naitou Densei Machidaseisakusho Co., Ltd. (tel: (044) 822-3813). Contact an NEC dealer to purchase these products.
- The TGC-100SDW is a product of TOKYO ELETECH Corporation.

Contact: Daimaru Kogyo Co., Ltd. Tokyo Electronic Component Department (tel: (03) 3820-7112)

Osaka Electronic Component Department (tel: (06) 244-6672)

- Please refer to 78K/0 Series Selection Guide (U11126E) for information on the third party development tools.
- The following table shows what host machine and OS support each software.

Host machine	PC	EWS
[OS]	PC-9800 series [Windows [™]]	HP9000 series 700 [™] [HP-UX [™]]
	IBM PC/AT and its compatibles [Windows]	SPARCstation [™] [SunOS [™]]
Software		NEWS [™] (RISC) [NEWS-OS [™]]
RA78K/0	√Note	\checkmark
CC78K/0	√Note	
PG-1500 controller	√Note	—
ID78K0-NS	\checkmark	—
ID78K0	\checkmark	
SM78K0	\checkmark	
RX78K/0	√Note	
MX78K0	√Note	\checkmark

Note DOS-based software.

DRAWING OF CONVERSION ADAPTER (TGC-100SDW)

Figure A-1. Drawing of TGC-100SDW (for reference only) (unit: mm)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	6 INCHES
А	21.55	0.848	а	14.45	0.569
В	0.5x24=12	0.020x0.945=0.472	b	1.85±0.25	0.073±0.010
С	0.5	0.020	с	3.5	0.138
D	0.5x24=12	0.020x0.945=0.472	d	2.0	0.079
Е	15.0	0.591	е	3.9	0.154
F	21.55	0.848	f	0.25	0.010
G	¢3.55	<i>ф</i> 0.140	g	<i>ф</i> 4.5	<i>φ</i> 0.177
н	10.9	0.429	h	16.0	0.630
I	13.3	0.524	i	1.125±0.3	0.044±0.012
J	15.7	0.618	j	0~5°	0.000~0.197°
К	18.1	0.713	k	5.9	0.232
L	13.75	0.541	I	0.8	0.031
М	0.5x24=12.0	0.020x0.945=0.472	m	2.4	0.094
Ν	1.125±0.3	0.044±0.012	n	2.7	0.106
0	1.125±0.2	0.044±0.008			TGC-100SDW-G1E
Р	7.5	0.295			
Q	10.0	0.394			
R	11.3	0.445			
S	18.1	0.713			
Т	<i>\$</i> 5.0	<i>ф</i> 0.197			
U	5.0	0.197			
V	4- <i>ф</i> 1.3	4- <i>ф</i> 0.051			
W	1.8	0.071			
Х	C 2.0	C 0.079			
Y	<i>ф</i> 0.9	<i>\$</i> 0.035			
Z	<i>ф</i> 0.3	<i>ф</i> 0.012			

note: Product of TOKYO ELETECH CORPORATION.

DRAWINGS OF CONVERSION SOCKET (EV-9200GF-100) AND RECOMMENDED FOOTPRINTS

G H I

ITEM

A B C D E F G H I J K L

Μ

Ν

0

Р

Q

R

s

8.2

8.0

2.5

2.0

0.35

¢2.3

¢1.5

MILLIMETERS

Figure A-2. Drawing of EV-9200GF-100 (for reference only)

<mark>→ M</mark> → → N→	0	
		× –
	o P	<u> </u>

24.6	0.969
21	0.827
15	0.591
18.6	0.732
4-C 2	4-C 0.079
0.8	0.031
12.0	0.472
22.6	0.89
25.3	0.996
6.0	0.236
16.6	0.654
19.3	0.76

0.323

0.315

0.098

0.079

0.014

ø0.091

Ø0.059

EV-9200GF-100-G0E

Figure A-3. Recommended Footprints of EV-9200GF-100 (for reference only)

	EV-9200GF-100-1	
ITEM	MILLIMETERS	INCHES
Α	26.3	1.035
В	21.6	0.85
С	$0.65 \pm 0.02 \times 29 = 18.85 \pm 0.05$	$0.026\substack{+0.001\\-0.002}{\times} 1.142 {=} 0.742\substack{+0.002\\-0.002}$
D	$0.65\pm0.02 \times 19=12.35\pm0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$
Е	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	$0.236\substack{+0.003\\-0.002}$
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	¢2.36±0.03	Ø0.093 ^{+0.001} -0.002
К	ø2.3	¢0.091
L	¢1.57±0.03	Ø0.062 ^{+0.001} 0002

EV-9200GF-100-P1E

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

***** APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document Number	
	English	Japanese
μPD780308, 780308Y Subseries User's Manual	U11377E	U11377J
μPD780306Y, 780308Y Data Sheet	U12251E	U12251J
µPD78P0308Y Data Sheet	This document	U11832J
78K/0 Series User's Manual Instructions	U12326E	U12326J
78K/0 Series Instruction Application Table	_	U10903J
78K/0 Series Instruction Set	_	U10904J
μ PD780308 Subseries Special Function Register Table	_	To be prepared
78K/0 Series Application Note — Basics III	U10182E	U10182J

Documents Related to Development Tools (User's Manual)

Document Name		Document Number	
		English	Japanese
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preproces	sor	EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K0 C Compiler Application Note	Programming Know-how	EEA-1208	EEA-618
CC78K Series Library Source File		—	U12322J
PG-1500 PROM Programmer		U11940E	U11940J
PG-1500 Controller PC-9800 series (MS-DOS [™]) based		EEU-1291	EEU-704
PG-1500 Controller IBM PC series (PC DOS™) based		U10540E	EEU-5008
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-780308-NS-EM1		To be prepared	To be prepared
IE-780308-R-EM		U11362E	U11362J
EP-78064		EEU-1469	EEU-934
SM78K0 System Simulator Windows based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Parts User's Open	U10092E	U10092J
	Interface Specifications		
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger EWS-based	Reference	_	U11151J
ID78K0 Integrated Debugger PC-based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger Windows-based	Guide	U11649E	U11649J

Caution The contents of the above documents are subject to change without prior notice. Be sure to use the latest edition for design, etc.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document Number	
		English	Japanese
78K/0 Series Real-Time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Others

Document Name	Document No.	
	English	Japanese
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic	C11892E	C11892J
Discharge (ESD)		
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	_
Microcomputer Product Series Guide	_	U11416J

Caution The contents of the above documents are subject to change without notice. Be sure to use the latest edition for design, etc.

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd.
NEC Electronics (Germany) GmbH	NEC Electronics (France) S.A.	Seoul Branch
Duesseldorf, Germany	Velizy-Villacoublay, France	Seoul, Korea
Tel: 0211-65 03 02	Tel: 01-30-67 58 00	Tel: 02-528-0303
Fax: 0211-65 03 490	Fax: 01-30-67 58 99	Fax: 02-528-4411
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860	NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583
NEC Electronics Italiana s.r.1.	NEC Electronics (Germany) GmbH	NEC Electronics Taiwan Ltd.
Milano, Italy	Scandinavia Office	Taipei, Taiwan
Tel: 02-66 75 41	Taeby, Sweden	Tel: 02-719-2377
Fax: 02-66 75 42 99	Tel: 08-63 80 820	Fax: 02-719-5951

Fax: 08-63 80 388

NEC do Brasil S.A. Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829 Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or a trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed	: μPD78P0308YKL-T
The customer must judge	: <i>µ</i> PD78P0308YGC-8EU, 78P0308YGF-3BA
the need for license	

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.