mos integrated circuit $\mu \mathbf{PD78P058Y}$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P058Y is a member of the μ PD78054Y subseries of 78K/0 series products, in which the on-chip mask ROM of the μ PD78058Y is replaced with one-time programmable one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for applications involving the evaluation of systems in development stages, small-scale production of many different products, and rapid development and time-to-market of a new product.

Caution The reliability of the μ PD78P058YKK-T is not guaranteed when used in mass-production applications. Please use this device only experimentally or for evaluation during trial manufacture.

Details are given in the following User's Manuals. Be sure to read them before starting design.
 μPD78054, 78054Y Subseries User's Manual: U11747E
 78K Series User's Manual—Instruction : U12326E

FEATURES

- Pin compatible with mask ROM versions (except the VPP pin)
- Internal PROM: 60 Kbytes^{Note 1}
 - μPD78P058YKK-T: Reprogrammable (ideal for system evaluation)
 - µPD78P058YGC: Programmable once only (ideal for small-lot production)
- Internal high-speed RAM : 1024 bytes^{Note 1}
- Internal expansion RAM : 1024 bytes^{Note 2}
- Buffer RAM : 32 bytes
- Operable in the same supply voltage range as mask ROM versions (VDD = 2.0 to 6.0 V)
- QTOP[™] microcontrollers compatible
- **Notes 1.** Internal PROM and internal high-speed RAM capacities can be changed by memory size switching register (IMS).
 - 2. Internal expansion RAM capacity can be changed by internal expansion RAM size switching register (IXS).
- **Remarks 1.** QTOP Microcontroller is the general name of the microcontrollers with on-chip one-time PROM that are totally supported by NEC write service (from write to marking, screening and testing.)
 - 2. For the differences between PROM version and mask ROM version, refer to 1. DIFFERENCES BETWEEN μPD78P058Y AND MASK ROM VERSIONS.

In this document, "PROM" is used in parts common to one-time PROM and EPROM versions.

The information in this document is subject to change without notice.

ORDERING INFORMATION

_	Part Number	Package	Internal ROM	Quality Grade
*	μΡD78P058YGC-8BT	80-pin plastic QFP (14 $ imes$ 14 mm)	One-time PROM	Standard
	μPD78P058YKK-T	80-pin ceramic WQFN	EPROM	Not applicable

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

*

78K/0 SERIES DEVELOPMENT

The following shows the products organized according to usage. The names in the parallelograms are subseries names.

			Products in mass production
			Products under development
			Y subseries products are compatible with I ² C bus.
	F	Control	
	100-pin	µPD78075B	EMI-noise reduced version of the μ PD78078
	100-pin	μPD78078μPD78078Y	A timer was added to the μ PD78054 and external interface was enhanced
	100-pin	<u>μPD78070A</u> μPD78070AY	ROM-less version of the μ PD78078
	100-pin	μPD780018AY	Serial I/O of the µPD78078Y was enhanced and the function is limited.
	80-pin	μPD780058 μPD780058Υ ^{Νοτε}	Serial I/O of the μ PD78054 was enhanced and EMI-noise was reduced.
	80-pin	μPD78058FμPD78058FY	EMI-noise reduced version of the μ PD78054
	80-pin	<u>μ</u> PD78054 <u>μ</u> PD78054Y <u>μ</u> PD780034	UART and D/A converter were enhanced to the μ PD78014 and I/O was enhanced
	64-pin 64-pin	μPD780024 μPD780024Y	A/D converter of the μ PD780024 was enhanced Serial I/O of the μ PD78018F was added and EMI-noise was reduced.
	64-pin	/ µPD78014H /	EMI-noise reduced version of the μ PD78018F
	64-pin	μPD78018F	Z Low-voltage (1.8 V) operation version of the μ PD78014, with larger selection of ROM and RAM capacities
	64-pin	μPD78014 μPD78014Y	7 An A/D converter and 16-bit timer were added to the μ PD78002
	64-pin	μPD780001	An A/D converter was added to the μ PD78002
	64-pin	μPD78002μPD78002Y	Basic subseries for control
	42/44-pir	$\mu \mu PD78083$	On-chip UART, capable of operating at low voltage (1.8 V)
	64-pin 64-pin 64-pin	Inverter control μPD780988 μPD780964 μPD780924	Inverter control, timer, SIO of the μ PD780964 were enhanced. ROM, RAM capacity increased. A/D converter of the μ PD780924 was enhanced On-chip inverter control circuit and UART. EMI-noise was reduced.
78K/0 Series	100-pin 100-pin 80-pin 80-pin	FIP TM drive μPD780208 μPD780228 μPD78044H μPD78044F	The I/O and FIP C/D of the μ PD78044F were enhanced, Display output total: 53 The I/O and FIP C/D of the μ PD78044H were enhanced, Display output total: 48 An N-ch open drain I/O was added to the μ PD78044F, Display output total: 34 Basic subseries for driving FIP, Display output total: 34
	100-pin 100-pin 100-pin	LCD drive / µPD780308 // µPD780308Y / / µPD78064B / / µPD78064 // µPD78064Y /	The SIO of the μ PD78064 was enhanced, and ROM, RAM capacity increased EMI-noise reduced version of the μ PD78064 Basic subseries for driving LCDs, on-chip UART
	80-pin 80-pin	IEBus [™] supported μPD78098B μPD78098	EMI-noise reduced version of the μ PD78098 An IEBus controller was added to the μ PD78054
	- 80-pin	Meter control µPD780973	On-chip automobile meter driving controller/driver

	Function	ROM	Serial Interface	I/O	Vdd
Subseries Name		Capacity			MIN. Value
Control	μPD78078Y	48 K-60 K	3-wire/2-wire/l ² C : 1 ch 3-wire with automatic transmit/receive function : 1 ch	88	1.8 V
	μPD78070AY	—	3-wire/UART : 1 ch	61	2.7 V
	μΡD780018AY	48 K-60 K	3-wire with automatic transmit/receive function : 1 chTime division 3-wire: 1 chI²C bus (multi-master compatible): 1 ch	88	
	μΡD780058Υ	24 K-60 K	3-wire/2-wire/l²C: 1 ch3-wire with automatic transmit/receive function: 1 ch3-wire/time division UART: 1 ch	68	1.8 V
	μPD78058FY	48 K-60 K	3-wire/2-wire/l ² C : 1 ch 3-wire with automatic transmit/receive function : 1 ch	69	2.7 V
	μPD78054Y	16 K-60 K	3-wire/UART : 1 ch		2.0 V
	μPD780034Y	8 K-32 K	UART : 1 ch	51	1.8 V
	μPD780024Y		3-wire : 1 ch I ² C bus (multi-master compatible) : 1 ch		
	μPD78018FY	8 K-60 K	3-wire/2-wire/l ² C : 1 ch 3-wire with automatic transmit/receive function : 1 ch	53	
	μPD78014Y	8 K-32 K	3-wire/2-wire/SBI/I ² C : 1 ch 3-wire with automatic transmit/receive function : 1 ch		2.7 V
	μPD78002Y	8 K-16 K	3-wire/2-wire/SBI/I ² C : 1 ch		
LCD drive	μΡD780308Υ	48 K-60 K	3-wire/2-wire/l²C: 1 ch3-wire/time division UART: 1 ch3-wire: 1 ch	57	2.0 V
	μΡD78064Υ	16 K-32 K	3-wire/2-wire/l2C: 1 ch3-wire/UART: 1 ch		

The following lists the main functional differences between subseries products.

Remark The functions other than serial interface are common to the subseries without Y suffix.

FUNCTION DESCRIPTION

	Item	Function		
Internal memory		 PROM : 60 Kbytes^{Note 1} RAM High-speed RAM: 1024 bytes^{Note 1} Expansion RAM : 1024 bytes^{Note 2} Buffer RAM : 32 bytes 		
Memory space		64 Kbytes		
General-purpose	register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
		Minimum instruction execution time is variable.		
Minimum instruction execution time	When main system clock is selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@ 5.0 MHz)		
	When subsystem clock is selected	122 μs (@ 32.768 kHz)		
Instruction set		 16-bit operation Multiply/divide (8-bit × 8-bit, 16-bit / 8-bit) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 		
		Total : 69 • CMOS input : 2 • CMOS input/output : 63 • N-ch open-drain input/output : 4		
A/D converter		8-bit resolution × 8 ch		
D/A converter		8-bit resolution × 2 ch		
Serial interface		 3-wire serial I/O/2-wire serial I/O/I²C bus mode selectable : 1 ch 3-wire serial I/O mode (with on-chip max. 32-byte automatic transmit/receive function) : 1 ch 3-wire serial I/O/UART mode selectable : 1 ch 		
Timer		 16-bit timer/event counter : 1 ch 8-bit timer/event counter : 2 ch Watch timer : 1 ch Watchdog timer : 1 ch 		
Timer output		3 pins (14-bit PWM output: 1 pin)		
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, and 5.0 MHz (@ 5.0 MHz with main system clock) 32.768 kHz (@ 32.768 kHz with subsystem clock)		
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz and 9.8 kHz (@ 5.0 MHz with main system clock)		
Vectored	Maskable	Internal: 13, external: 7		
interrupt	Non-maskable	Internal: 1		
sources Software		1		
Test inputs		Internal: 1, external: 1		
Supply voltage		V _{DD} = 2.0 to 6.0 V		
Operating ambier	nt temperature	$T_{A} = -40$ to +85 °C		
Packages		 80-pin plastic QFP (14 × 14 mm) 80-pin ceramic WQFN 		

Notes 1. Internal PROM/internal high-speed RAM capacity can be changed by memory size switching register (IMS).

2. Internal expansion RAM capacity can be changed by internal expansion RAM size switching register (IXS).

PIN CONFIGURATIONS (TOP VIEW)

- (1) Normal Operating Mode
 - 80-pin plastic QFP (14 \times 14 mm)
 - μ**ΡD78P058YGC-8BT**
 - 80-pin ceramic WQFN μPD78P058YKK-T

- ★ Cautions 1. Connect VPP pin to Vss directly.
 - 2. Connect AVDD pin to VDD.
 - 3. Connect AVss pin to Vss.

AVss BUSY BUZ INTP0-INTP6 P00-P07 P10-P17 P20-P27 P30-P37 P40-P47 P50-P57	 Address Bus Address/Data Bus Analog Input Analog Output Analog Output Asynchronous Serial Clock Address Strobe Analog Power Supply Analog Reference Voltage Analog Ground Busy Buzzer Clock Interrupt from Peripherals Port0 Port1 Port2 Port3 Port4 Port5 Port6 	RESET RD RTP0-RTP7 RxD SB0, SB1 SCK0, SCK1 SCL SDA0, SDA1 SI0, SI1 SO0, SO1 STB TI1, TI2 TI00, TI01 TO0-TO2 TxD VDD VPP VSS WAIT	 Reset Read Strobe Real-Time Output Port Receive Data Serial Bus Serial Clock Serial Clock Serial Data Serial Output Serial Output Strobe Timer Input Timer Input Timer Output Transmit Data Power Supply Programming Power Supply Wait
-	: Port5	Vss	: Ground
P70-P72 P120-P127 P130, P131 PCL	 Port7 Port12 Port13 Programmable Clock 	WR X1, X2 XT1, XT2	: Write Strobe: Crystal (Main System Clock): Crystal (Subsystem Clock)

*

- (2) PROM Programming Mode
 - + 80-pin plastic QFP (14 \times 14 mm)
 - μ**ΡD78P058YGC-8BT**
 - 80-pin ceramic WQFN μPD78P058YKK-T

- 3. RESET : Set to low level.
- 4. Open : No connection

A0-A16	: Address Bus	RESET	: Reset
CE	: Chip Enable	Vdd	: Power Supply
D0-D7	: Data Bus	Vpp	: Programming Power Supply
OE	: Output Enable	Vss	: Ground
PGM	: Program		

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78P058Y AND MASK ROM VERSIONS	1
2.	PIN FUNCTIONS1	2
	2.1 PINS IN NORMAL OPERATING MODE	12
	2.2 PINS IN PROM PROGRAMMING MODE 1	5
	2.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	6
3.	MEMORY SIZE SWITCHING REGISTER (IMS)2	20
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	21
5.	PROM PROGRAMMING2	
	5.1 OPERATING MODES	
	5.2 PROM WRITE PROCEDURE	
	5.3 PROM READ PROCEDURE	<u>28</u>
6.	ERASURE (µPD78P058YKK-T ONLY)2	29
7.	ERASURE WINDOW OPAQUE FILM (µPD78P058YKK-T ONLY)2	29
8.	SCREENING OF ONE-TIME PROM VERSIONS2	29
9.	ELECTRICAL SPECIFICATIONS	60
10.	CHARACTERISTIC CURVES	62
11.	PACKAGE DRAWINGS	64
12.	RECOMMENDED SOLDERING CONDITIONS6	6
AP	PENDIX A. DEVELOPMENT TOOLS6	57
AP	PENDIX B. RELATED DOCUMENTS7	2

1. DIFFERENCES BETWEEN μ PD78P058Y AND MASK ROM VERSIONS

The μ PD78P058Y is a single-chip microcontroller with an on-chip one-time writable PROM or with an on-chip EPROM which has program write, erasure, and rewrite capability.

It is possible to make all the functions except for PROM specification, and mask option of P60 to P63 pins, to the same as those of mask ROM versions by setting the memory size switching register (IMS) and internal expansion RAM size switching register (IXS).

Differences between the PROM version (μ PD78P058Y) and mask ROM versions (μ PD78052Y, 78053Y, 78054Y, 78055Y, 78056Y, 78056Y, 78058Y) are shown in Table 1-1.

Item	μPD78P058Y	Mask ROM Versions
Internal ROM structure	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μ PD78052Y: 16 Kbytes μ PD78053Y: 24 Kbytes μ PD78054Y: 32 Kbytes μ PD78055Y: 40 Kbytes μ PD78056Y: 48 Kbytes μ PD78058Y: 60 Kbytes
Internal high-speed RAM capacity	1024 bytes	μPD78052Y : 512 bytes Other than μPD78052Y: 1024 bytes
Internal expansion RAM capacity	1024 bytes	μPD78058Y : 1024 bytes Other than μPD78058Y: None
Changing internal ROM and internal expansion RAM capacities by memory size switching register (IMS)	Yes ^{Note 1}	No
Changing internal expansion RAM capacity by internal expansion RAM size switching register (IXS)	Yes ^{Note 2}	No
IC pin	None	Provided
VPP pin	Provided	None
P60-P63 pin mask option with pull-up resistor	None	Provided
Electrical specifications, recommended soldering conditions	Refer to the data sheet separately availa	able

Table 1-1. Differences between μ PD78P058Y and Mask ROM Versions

Notes 1. The internal PROM capacity becomes 60 Kbytes, and the internal high-speed RAM capacity becomes 1024 bytes by RESET input.

- 2. The internal expansion RAM capacity becomes 1024 bytes by RESET input.
- Caution The PROM and mask ROM versions differ from each other in terms of noise immunity and noise radiation. When replacing the PROM version with the mask ROM version in the course of experimental production to mass production, perform thorough evaluation with the CS version (not ES version) of the mask ROM version.
 - **Remark** The internal expansion RAM size switching register (IXS) is provided for the μ PD78058Y and μ PD78P058Y only.

2. PIN FUNCTIONS

2.1 PINS IN NORMAL OPERATING MODE

(1) Port Pins (1/2)

Pin Name	Input/Output		Function	After Reset	Alternate Function
P00	Input	Port 0.	Input only.	Input	INTP0/TI00
P01	Input/output	8-bit input/output port.	Input/output is specifiable bit-wise.	Input	INTP1/TI01
P02			When used as the input port,		INTP2
P03			it is possible to use and on-chip		INTP3
P04			pull-up resistor by software.		INTP4
P05					INTP5
P06					INTP6
P07 ^{Note1}	Input		Input only.	Input	XT1
P10 to P17	Input/output	Port 1.		Input	ANI0 to ANI7
		8-bit input/output port.			
		Input/output is specifiable	e bit-wise.		
		When used as the input	port, it is possible to use an on-chip		
		pull-up resistor by softwa	are. Note 2		
P20	Input/output	Port 2.		Input	SI1
P21		8-bit input/output port.			SO1
P22		Input/output is specifiable	e bit-wise.		SCK1
P23		When used as the input	port, it is possible to use an on-chip		STB
P24		pull-up resistor by softwa	are.		BUSY
P25					SI0/SB0/SDA0
P26					SO0/SB1/SDA1
P27					SCK0/SCL
P30	Input/output	Port 3.		Input	ТОО
P31		8-bit input/output port.			TO1
P32		Input/output is specifiable	e bit-wise.		TO2
P33]	When used as the input	port, it is possible to use an on-chip		TI1
P34]	pull-up resistor by softwa	are.		TI2
P35]				PCL
P36]				BUZ
P37					

Notes 1. When using P07/XT1 pins as the input ports, set the processor clock control register (PCC) bit 6 (FRC) to 1 (do not to use the feedback resistor of the subsystem clock).

2. When using P10/ANI0 to P17/ANI7 pins as the analog inputs for A/D converter, set port 3 to the input mode. Their pull-up resistor are automatically disabled.

(1) Port Pins (2/2)

Pin Name	Input/Output		Function	After Reset	Alternate Function
P40 to P47	Input/output	Port 4.		Input	AD0 to AD7
		8-bit input/output port.			
		Input/output is specifiable	e in 8-bit unit.		
		When used as the input	port, it is possible to use an on-chip		
		pull-up resistor by softwa	are.		
		Set test input flag (KRIF)	to 1 by falling edge detection.		
P50 to P57	Input/output	Port 5.		Input	A8 to A15
		8-bit input/output port.			
		It is possible to directly d	Irive LEDs.		
		Input/output is specifiable	e bit-wise.		
		When used as the input	port, it is possible to use an on-chip		
		pull-up resistor by softwa	are.		
P60	Input/output	Port 6.	N-ch open-drain input/output port.	Input	—
P61		8-bit input/output port.	It is possible to directly drive LEDs.		
P62		Input/output is			
P63		specifiable bit-wise.			
P64			When used as the input port, it is	Input	RD
P65			possible to use an on-chip pull-up		WR
P66			resistor by software.		WAIT
P67					ASTB
P70	Input/output	Port 7.		Input	SI2/RXD
		3-bit input/output port.			
P71		Input/output is specifiable	e bit-wise.		SO2/TXD
P72		When used as the input	port, it is possible to use an on-chip		SCK2/ASCK
172		pull-up resistor by softwa	are.		30K2/A30K
P120 to P127	Input/output	Port 12.		Input	RTP0 to RTP7
		8-bit input/output port.			
		Input/output is specifiable	e bit-wise.		
		When used as the input	port, it is possible to use an on-chip		
		pull-up resistor by softwa	are.		
P130, P131	Input/output	Port 13.		Input	ANO0, ANO1
		2-bit input/output port.			
		Input/output is specifiable	e bit-wise.		
		When used as the input	port, it is possible to use an on-chip		
		pull-up resistor by softwa	are.		

(2) Non-Port Pins (1/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request inputs, for which the effective edges	Input	P00/TI00
INTP1		(rising edge, falling edge, and both rising and falling edges)		P01/TI01
INTP2		can be specified.		P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SI0	Input	Serial data input of the serial interface	Input	P25/SB0/SDA0
SI1				P20
SI2				P70/R×D
SO0	Output	Serial data output of the serial interface	Input	P26/SB1/SDA1
SO1				P21
SO2				P71/TxD
SB0	Input/output	Serial data input/output of the serial interface	Input	P25/SI0/SDA0
SB1				P26/SO0/SDA1
SDA0				P25/SI0/SB0
SDA1				P26/SO0/SB1
SCK0	Input/output	Serial clock input/output of the serial interface	Input	P27/SCL
SCK1				P22
SCK2				P72/ASCK
SCL				P27/SCK0
STB	Output	Automatic transmit/receive strobe output of the serial interface	Input	P23
BUSY	Input	Automatic transmit/receive busy input of the serial interface	Input	P24
RxD	Input	Serial data input for asynchronous serial interface	Input	P70/SI2
TxD	Output	Serial data output for asynchronous serial interface	Input	P71/SO2
ASCK	Input	Serial clock input for asynchronous serial interface	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00)	1	P01/INTP1
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer (TM0) output	Input	P30
		(Can also be used as 14-bit PWM output.)		
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
RTP0 to RTP7	Output	Real-time output port which outputs data in synchronization with trigger.	Input	P120 to P127
AD0 to AD7	Input/output	Low-order address/data bus when expanding memory to the outside.	Input	P40 tp P47

 \star

(2) Non-Port Pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
A8 to A15	Output	High-order address bus when expanding memory to the outside.	Input	P50 P57
RD	Output	Strobe signal output for the external memory read operation	Input	P64
WR		Strobe signal output for the external memory write operation		P65
WAIT	Input	Wait insertion when accessing external memory	Input	P66
ASTB	Output	Strobe output to externally latches address information which is	Input	P67
		output to ports 4 and 5 for accessing external memory.		
ANI0 to ANI7	Input	Analog input of A/D converter	Input	P10 to P17
ANO0, ANO1	Output	Analog output of D/A converter	Input	P130, P131
AV _{REF0}	Input	Reference voltage input of A/D converter	—	_
AV _{REF1}	Input	Reference voltage input of D/A converter	—	
AVdd	—	Analog power supply of A/D converter. Connect to $V_{\mbox{\scriptsize DD}}.$	—	_
AVss	—	Ground potential of A/D and D/A converter. Connect to Vss.	—	_
RESET	Input	System reset input	—	
X1	Input	Main system clock oscillation crystal connection	—	_
X2	_			_
XT1	Input	Subsystem clock oscillation crystal connection	Input	P07
XT2	_			_
Vdd	_	Positive power supply	_	_
Vpp	_	High-voltage applied during program write/verify.	_	_
		Connect to Vss directly in normal operating mode.		
Vss	_	Ground potential		_

2.2 PINS IN PROM PROGRAMMING MODE

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting
		When +5 V or +12.5 V is applied to the V_{PP} pin and a low-level signal is applied to the $\overline{\text{RESET}}$
		pin, this chip is set in the PROM programming mode.
Vpp	Input	PROM programming mode setting and high-voltage applied during program write/verification
A0 to A16	Input	Address bus
D0 to D7	Input/output	Data bus
CE	Input	PROM enable input/program pulse input
OE	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programing mode.
Vdd	_	Positive power supply
Vss	_	Ground potential

2.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

Types of input/output circuits of the pins and recommeded connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see **Figure 2-1**.

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connecting Method when Unused
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-A	Input/output	Independently connect to Vss through resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P06/INTP6			
P07/XT1	16	Input	Connect to VDD.
P10/ANI0 to P17/ANI7	11	Input/output	Independently connect to VDD or Vss through resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0/SDA0	10-A		
P26/SO0/SB1/SDA1			
P27/SCK0/SCL			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E		Independently connect to VDD through resistor.

Table 2-1. Pin Input/Output Circuits (1/2)

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connecting Method when Unused
P50/A8 to P57/A15	5-A	Input/output	Independently connect to VDD or Vss through resistor.
P60 to P63	13-D		Independently connect to VDD through resistor.
P64/RD	5-A		Independently connect to VDD or Vss.
P65/WR			
P66/WAIT			
P67/ASTB			
P70/SI2/RxD	8-A		
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P120/RTP0 to P127/RTP7	5-A		
P130/ANO0, P131/ANO1	12-A		Independently connect to Vss through resistor.
RESET	2	Input	_
XT2	16	_	Leave open.
AV _{REF0}	_		Connect to Vss.
AV _{REF1}			Connect to VDD.
AVdd			
AVss			Connect to Vss.
Vpp			Directly connect to Vss.

Table 2-1. Pin Input/Output Circuits (2/2)

17

Figure 2-1. Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of mask ROM version having different internal memory capacities (ROM, RAM).

The IMS is set up by the 8-bit memory manipulation instruction.

CFH will result by the RESET input.

Note Set the internal ROM capacity to less than 56K bytes when external device expansion function is used.

Table 3-1 shows the setting values of IMS which makes the memory mapping the same as that of the various mask ROM products.

Target Mask ROM Version	IMS Setting Value
μPD78052Y	44H
μPD78053Y	C6H
μPD78054Y	C8H
μPD78055Y	САН
μPD78056Y	ССН
μPD78058Y	CFH

Table 3-1. Memory Size Switching Register Setting Values

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This is a register to set the internal expansion RAM capacity by software. By setting this internal expansion RAM size switching register (IXS), it is possible to get the same memory mapping as that of mask ROM version having different internal expansion RAM capacity.

The IXS is set up by 8-bit memory manipulation instruction. 0AH will result by the $\overline{\text{RESET}}$ input.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

Table 4-1 shows the setting values of IXS which makes the memory mapping the same as that of the various mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Version	IXS Setting Value
μPD78052Y	0CH
μPD78053Y	
μPD78054Y	
μPD78055Y	
μPD78056Y	
μPD78058Y	0AH

Remark Even if the μ PD78P058Y program that includes "MOV IXS, #0CH" is implemented on the μ PD78052Y, 78053Y, 78054Y, 78055Y, or 78056Y, its operation will not be affected.

5. PROM PROGRAMMING

The μ PD78P058Y has an on-chip 60K-byte PROM as a program memory. For programming, set the PROM programming mode by the VPP and RESET pins. For connecting unused pins, refer to **PIN CONFIGURATIONS (TOP VIEW) (2) PROM Programming Mode**.

Caution Program writing should be performed in the address range 0000H to EFFFH (the last address, EFFFH, should be specified). Writing cannot be performed with a PROM programmer that cannot specify the write addresses.

5.1 OPERATING MODES

When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the $\overrightarrow{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overrightarrow{\text{CE}}$, $\overrightarrow{\text{OE}}$ and $\overrightarrow{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Pin Operating Mode	RESET	Vpp	Vdd	CE	ŌĒ	PGM	D0 to D7
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High-impedance
Byte write				L	Н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	Н	Н	High-impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable				L	Н	×	High-impedance
Standby				Н	×	×	High-impedance

Table 5-1. Operating Modes of PROM Programming

Remark ×: L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P058Ys are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the $\overline{\text{OE}}$ status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1 ms program pulse (active low) to the \overrightarrow{PGM} pin with $\overrightarrow{CE} = H$, $\overrightarrow{OE} = H$. Then, program verification can be performed, if $\overrightarrow{CE} = L$, $\overrightarrow{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X (X \leq 10) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1 ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X (X \leq 10) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly, after the write.

(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin, and D0 to D7 pins of multiple μ PD78P058Ys are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the \overline{PGM} pin driven high.

5.2 PROM WRITE PROCEDURE

Figure 5-1. Page Program Mode Flowchart

Remark G = Start address

N = Program last address

Figure 5-2. Page Program Mode Timing

Figure 5-3. Byte Program Mode Flowchart

Remark G = Start address

N = Program last address

Figure 5-4. Byte Program Mode Timing

Cautions 1. VDD should be applied before VPP and removed after VPP.

- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.

5.3 PROM READ PROCEDURE

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in **PIN CONFIGURATION (TOP VIEW) (2) PROM Programming Mode**.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. ERASURE (µPD78P058YKK-T ONLY)

The μ PD78P058YKK-T is capable of erasing (all contents to FFH) the data written in a program memory and rewriting.

When erasing the data, irradiate light having a wavelength of less than about 400 nm to the window on the top of the package. Normally, ultraviolet rays of 254-nm wavelength should be used. Volume of irradiation required to completely erase the data is as follows:

- UV intensity × erasing time : 30 W•s/cm² or more
- Erasing time : More than 40 min. (When a UV lamp of 12,000 μ W/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, contamination of the erasing window, etc.)

When erasing the data, set up the UV lamp within 2.5 cm from the erasing window. Further, if a filter is provided on the UV lamp, remove the filter during the erasure process.

7. ERASURE WINDOW OPAQUE FILM (µPD78P058YKK-T ONLY)

To protect from unintentional erasure by other than EPROM erasure lamp light, or to protect internal circuits other than EPROM from malfunction due to light coming in through the window, mask the window with the attached opaque film except when EPROM erasure is performed.

8. SCREENING OF ONE-TIME PROM VERSIONS

The one-time PROM version (μ PD78P058YGC-8BT) can not be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125 °C	24 hours

At present, a fee is charged by NEC for one-time PROM after-programming marking, screening, and verify service for the QTOP Microcontroller. For details, contact your sales representative.

9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol		Test Conditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	Vpp				-0.3 to +13.5	V
	AVDD				-0.3 to V _{DD} + 0.3	V
	AV _{REF0}				-0.3 to V _{DD} + 0.3	V
	AV _{REF1}				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00-P07, P	10-P17, P20-P27, P30-P37	, P40-47,	-0.3 to V _{DD} + 0.3	V
		P50-P57, P6	64-P67, P70-P72, P120-P1	27, P130,		
		P131, X1, X	2, XT2, RESET			
	V _{I2}	P60-P63	N-ch open drain		-0.3 to +16	V
	Vı3	A9	PROM programming mo	de	-0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10-P17	Analog input pins		AVss - 0.3 to AVREF0 + 0.3	V
Output current, high	Іон	Per pin			-10	mA
		Total for P01-P06, P30-P37, P56, P57, P60-P67,		P60-P67,	-15	mA
		P120-P127 Total for P10-P17, P20-P27, P40-P47, P50-P55,				
					-15	mA
		P70-P72, P1	30, P131			
Output current, low	_{OL} Note	Per pin		Peak value	30	mA
				r.m.s.	15	mA
		Total for P5)-P55	Peak value	100	mA
				r.m.s.	70	mA
		Total for P5	6, P57, P60-P63	Peak value	100	mA
				r.m.s.	70	mA
		Total for P10)-P17, P20-P27, P40-P47,	Peak value	50	mA
		P70-P72, P1	30, P131	r.m.s.	20	mA
		Total for P0	1-P06, P30-P37, P64-P67,	Peak value	50	mA
		P120-P127		r.m.s	20	mA
Operating ambient temperature	Та			·	-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note r.m.s. should be calculated as follows: $[r.m.s.] = [peak value] \times \sqrt{Duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, alternate function pin characteristics are the same as port pin characteristics.

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) ^{Note 1}	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} has reached MIN. of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 6.0 V			10	ms
						30	
External clock	x2 x1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
		X1 input high-/low-level width (txH/txL)		85		500	ns

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.0 to 6.0 V)

Notes 1. Only the oscillation characteristics are shown. See the AC characteristics for instruction execution times.
 This is the time required for oscillation to stabilize after a reset or STOP mode release.

- Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by broken lines to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 6.0 V		1.2	2	S
	·//·					10	
External clock	XT2 XT1	X1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
		X1 input high-/low-level width (txтн/txт∟)		5		15	μs

SUBSYSTEM CLOCK OSILLATOR CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.0 to 6.0 V)

- **Notes 1.** Only the oscillation characteristics are shown. See the AC characteristics for instruction execution times.
 - 2. This is the time required for oscillation to stabilize after VDD has reached the MIN. of the oscillation voltage range.
- Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by broken lines to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.
 - 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANT

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA = -20 to $+80^{\circ}$ C)

Manufacturer	Part Number	Frequency (MHz)	Recommended	Circuit Constant	Oscillator Vo	oltage Range
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Kyocera Corp.	KBR-4.19MKS	4.19	Built-in	Built-in	2.0	6.0

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA = -40 to $+85^{\circ}$ C)

Manufacturer	Part Number	Frequency (MHz)	Recommended	Circuit Constant	d Oscillator Voltage Range		
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CST5.00MGW	5.0	Built-in	Built-in	2.7	6.0	
	CSA5.00MG	5.0	30	30	2.7	6.0	

- *
- Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz, unmeasured pins returned to 0 V.				15	pF
Input/output capacitance	Сю	f = 1 MHz. Unmeasured pins returned to 0.	P01-P06, P10-P17, P20-P27, P30-P37, P40- P47, P50-P57, P64-P67, P70-P72, P120-P127, P130, P131			15	pF
			P60-P63			20	pF

Remark Unless specified otherwise, alternate function pin characteristics are the same as port pin characteristics.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.0 to 6.0 V)

Parameter	Symbol	Test Conditi	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P10-P17, P21, P23, P30-P32, P35-P37, P40-P47, P50-P57,	V _{DD} = 2.7 to 6.0 V	0.7 Vdd		Vdd	V
		P64-P67, P71, P120-P127, P130, P131		0.8 Vdd		Vdd	V
	VIH2	P00-P06, P20, P22, P24-P27, P33, P34, P70, P72, RESET	V _{DD} = 2.7 to 6.0 V	0.8 Vdd		Vdd	V
				0.85 Vdd		Vdd	V
	Vінз	P60-P63 (N-ch open drain)	V _{DD} = 2.7 to 6.0 V	0.7 Vdd		15	V
				0.8 Vdd		15	V
	VIH4	X1, X2	V _{DD} = 2.7 to 6.0 V	Vdd -0.5		Vdd	V
				Vdd -0.2		Vdd	V
	Vih5	XT1/P07, XT2	$4.5~V \le V_{\text{DD}} \le 6.0~V$	0.8 Vdd		Vdd	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0.9 Vdd		Vdd	V
			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}^{\text{Note}}$	0.9 Vdd		Vdd	V
Input voltage, Iow	VIL1	P10-P17, P21, P23, P30-P32, P35-P37, P40-P47, P50-P57,	V _{DD} = 2.7 to 6.0 V	0		0.3 Vdd	V
		P64-P67, P71, P120-P127, P130, P131		0		0.2 Vdd	V
	VIL2	P00-P06, P20, P22, P24-P27, P33, P34, P70, P72, RESET	V _{DD} = 2.7 to 6.0 V	0		0.2 Vdd	V
				0		0.15 Vdd	V
	VIL3	P60-P63	$4.5~V \le V_{\text{DD}} \le 6.0~V$	0		0.3 Vdd	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		0.2 Vdd	V
				0		0.1 Vdd	V
	VIL4	X1, X2	V _{DD} = 2.7 to 6.0 V	0		0.4	V
						0.2	V
	VIL5	XT1/P07, XT2	$4.5~V \le V_{\text{DD}} \le 6.0~V$	0		0.2 Vdd	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		0.1 Vdd	V
			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}^{\text{Note}}$	0		0.1 Vdd	V
Output voltage,	Vон1	V_{DD} = 4.5 to 6.0 V, IoH = $-1~\text{mA}$		Vdd-1.0			V
high		Іон = -100 μА		Vdd-0.5			V
Output voltage, low	Vol1	P50-P57, P60-P63	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V},$ $I_{OL} = 15 \text{ mA}$		0.4	2.0	V
		P01-P06, P10-P17, P20-P27, P30-P37, P40-P47, P64-P67, P70-P72, P120-P127, P130, P131	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V},$ IoL = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	$V_{DD} = 4.5$ to 6.0 V, N-ch open drain, with pull-up resistor (1 k Ω)			0.2 Vdd	V
	Vol3	Ιοι = 400 μΑ			0.5	V	

Note When using XT1/P07 pin as P07, the inverse phase of P07 should be input to XT2 using an inverter.

Remark Unless specified otherwise, alternate function pin characteristics are the same as port pin characteristics.

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit	
Input leakage current, high	Ішні	P30-P37, P60-P67,		, P10-P17, P20-P27, , P40-P47, P50-P57, , P70-P72, P120-P127, 31, RESET			3	μΑ
	ILIH2		X1, X2, X	(T1/P07, XT2			20	μΑ
	Ілнз	V _{IN} = 15 V P60-63				80	μΑ	
Input leakage current, low	ILIL1	$V_{IN} = 0 V$	P30-P37 P64-P67	, P10-P17, P20-P27, , P40-P47, P50-P57, , P70-P72, P120-P127, 31, RESET			-3	μΑ
	ILIL2		X1, X2, X	(T1/P07, XT2			-20	μA
	ILIL3		P60-P63				_3 ^{Note 1}	μA
Output leakage current, high	ILOH1	Vout = Vdd				3	μΑ	
Output leakage current, low	ILOL1	Vout = 0 V				-3	μΑ	
Software pull-up resistor ^{Note 2}	R2	R ₂ V _{IN} = 0 V, P01-P06, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P64-P67, P70-P72, P120-P127, P130, P131		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 6.0 \text{ V}$	15	40	90	kΩ
				$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	20		500	kΩ

DC CHARACTERISTICS (TA = -40 to +85 °C, V_{DD} = 2.0 to 6.0 V)

- **Notes 1.** For P60 to P63, a low-level input leak current of $-200 \ \mu$ A (MAX.) flows only during the 1.5 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 1.5 clocks following executing a read-out instruction, the current is $-3 \ \mu$ A (MAX.).
 - **2.** A software pull-up resistor can only be used in the range $V_{DD} = 2.7$ to 6.0 V.

Remark Unless specified otherwise, alternate function pin characteristics are the same as port pin characteristics.

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD1	5.0 MHz crystal oscillation	$V_{\text{DD}} = 5.0 \text{V} \pm 10\%^{\text{Note 5}}$		5	15	mA
current ^{Note 1}		operating mode	$V_{\text{DD}} = 3.0 \text{V}{\pm}10\%^{\text{Note 6}}$		0.7	2.1	mA
		(fxx = 2.5 MHz) ^{Note 2}	$V_{\text{DD}} = 2.2 \text{V} \pm 10\%^{\text{Note 6}}$		0.4	1.2	mA
		5.0 MHz crystal oscillation operating	$V_{\text{DD}} = 5.0 \text{V}{\pm}10\%^{\text{Note 5}}$		9.0	27.0	mA
		mode (fxx = 5.0 MHz) ^{Note 3}	$V_{\text{DD}} = 3.0 \text{V} \pm 10\%^{\text{Note 6}}$		1.0	3.0	mA
	DD2	5.0 MHz crystal oscillation	$V_{DD} = 5.0 V \pm 10\%$		1.4	4.2	mA
		HALT mode	VDD = 3.0V±10%		0.5	1.5	mA
		(fxx = 2.5 MHz) ^{Note 2}	$V_{DD} = 2.2V \pm 10\%$		280	840	μΑ
		5.0 MHz crystal oscillation HALT	$V_{DD} = 5.0V \pm 10\%$		1.6	4.8	mA
		mode (fxx = 5.0 MHz) ^{Note 3}	VDD = 3.0V±10%		0.65	1.95	mA
	IDD3	32.768 kHz	$V_{DD} = 5.0V \pm 10\%$		135	270	μΑ
		crystal oscillation operating	VDD = 3.0V±10%		95	190	μΑ
		mode ^{Note 4}	$V_{DD} = 2.2V \pm 10\%$		70	140	μΑ
	DD4	32.768 kHz	$V_{DD} = 5.0V \pm 10\%$		25	55	μΑ
		crystal oscillation HALT	$V_{DD} = 3.0V \pm 10\%$		5	15	μΑ
		mode ^{Note 4}	$V_{DD} = 2.2V \pm 10\%$		2.5	12.5	μΑ
	DD5	XT1 = VDD	$V_{DD} = 5.0V \pm 10\%$		1	30	μΑ
		STOP mode	$V_{DD} = 3.0V \pm 10\%$		0.5	10	μΑ
		Feedback resistor used	$V_{DD} = 2.2V \pm 10\%$		0.3	10	μΑ
	DD6	XT1 = VDD	$V_{DD} = 5.0 V \pm 10\%$		0.1	30	μΑ
		STOP mode	$V_{DD} = 3.0V \pm 10\%$		0.05	10	μΑ
		Feedback resistor not used	$V_{DD} = 2.2V \pm 10\%$		0.05	10	μΑ

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 2.0 to 6.0 V)

Notes 1. Current flowing in V_{DD} and AV_{DD} pins. However, current flowing in A/D converter, D/A converter, or onchip pull-up resistors is not included.

- 2. Main system clock: fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H).
- **3.** Main system clock: fxx = fx operation (when OSMS is set to 01H).
- **4.** When the main system clock is stopped.
- 5. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
- 6. Low-speed mode operation (when PCC is set to 04H).

*
\star

AC CHARACTERISTICS

Parameter	Symbol	Test Condition	าร	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating on main system clock	V _{DD} = 2.7 to 6.0 V	0.8		64	μs
(minimum		(fxx = 2.5 MHz) ^{Note 1}		2.2		64	μs
instruction execution time)		Operating on main system clock	$4.5~V \le V_{\text{DD}} \le 6.0~V$	0.4		32	μs
,		(fxx = 5.0 MHz) ^{Note 2}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0.8		32	μs
		Operating on subsystem clock		40 ^{Note 3}	122	125	μs
TI00 input high-	tтноо,	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 6.0 \text{ V}$		Note 4 2/fsam+0.1			μs
low level width	t tiloo	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.5 \text{ V}$		Note 4 2/fsam+0.2			μs
			Note 4 2/fsam+0.5			μs	
TI01 input high- tTH01,		V _{DD} = 2.7 to 6.0 V		10			μs
/low level width tTIL01			20			μs	
TI1, TI2 input	tTI1	V _{DD} = 4.5 to 6.0 V		0		4	MHz
frequency				0		275	kHz
TI1, TI2, input	tтıнı,	V _{DD} = 4.5 to 6.0 V		100			ns
high-/low-level width	t⊤i∟1			1.8			μs
Interrupt request	t inth	INTP0	$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 6.0 \text{ V}$	Note 4 2/fsam+0.1			μs
input high-/low- level width	tintl		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 3.5~\text{V}$	Note 4 2/fsam+0.2			μs
level width				Note 4 2/fsam+0.5			μs
INTP1-INTP6, KR0-KR7	INTP1-INTP6, KR0-KR7	V _{DD} = 2.7 to 6.0 V	10			μs	
			20			μs	
RESET low-level	trsl	VDD = 2.7 to 6.0 V		10			μs
width				20			μs

(1) **Basic Operation** ($T_A = -40$ to +85 °C, $V_{DD} = 2.0$ to 6.0 V)

Notes 1. Main system clock: fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H).

2. Main system clock: fxx = fx operation (when OSMS is set to 01H).

3. The value when an external clock is used. When using a crystal resonator, it is 114 μ s (MIN.).

4. fsam can be selected as fxx/2^N, fxx/32, fxx/64, or fxx/128 by bits 0 and 1 (SCS0 and SCS1) of the sampling clock selection register (SCS) (N = 0 to 4).

60 60 Cycle Time T_o [*μ*s] 0.7 0 Cycle Time T_{CY} [*µ*s] 07 0 Guaranteed Operation Range Guaranteed Operation Range 1.0 1.0 0.5 0.4 0.5 0.4 ĩ Ŷ ĥ ĩ Ŷ ŕ Ŷ 0 2 3 4 5 6 0 1 2 3 4 5 6 1 Supply Voltage VDD [V] Supply Voltage VDD [V]

Tcy vs VDD (Main System Clock, fxx = fx)

(2) Read/Write Operations

(a) When MCS = 1, PCC2 to $PCC0 = 000E$	3 (T _A = -40 to $+85$ °C, V _{DD} = 4.5 to 6.0 V)
---	---

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	t adh		50		ns
Data input time from address	tADD1			(2.85 + 2n)tcy - 80	ns
	tadd2			(4 + 2n)tcr - 100	ns
Data input time from $\overline{RD}\downarrow$	trdd1			(2 + 2n)tcr - 100	ns
	trdd2			(2.85 + 2n)tcy - 100	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(2 + 2n)tcy - 60		ns
	trdl2		(2.85 + 2n)tcy - 60		ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	trdwt1			0.85tcy - 50	ns
	trdwt2			2tcy - 60	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{WR}}\downarrow$	twrwt			2tcy - 60	ns
WAIT low-level width	tw⊤∟		(1.15 + 2n)tcr	(2 + 2n)tcr	ns
Write data setup time	twps		(2.85 + 2n)tcy - 100		ns
Write data hold time	twdн		20		ns
WR low-level width	twrl1		(2.85 + 2n)tcr - 60		ns
$\overline{\text{RD}}\downarrow$ delay time from ASTB \downarrow	t astrd		25		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	t ASTWR		0.85tcy + 20		ns
ASTB [↑] delay time from \overline{RD}^{\uparrow} in external fetch	t RDAST		0.85tcy - 10	1.15tcy + 20	ns
Address hold time from $\overline{RD} \uparrow$ in external fetch	trdadh		0.85tcy - 50	1.15tcy + 50	ns
Write data output time from \overline{RD}^\uparrow	trdwd		40		ns
Write data output time from $\overline{WR}\downarrow$	twrwd		0	50	ns
Address hold time from WR	twradh		0.85tcy	1.15tcy + 40	ns
RD↑ delay time from WAIT↑	twrrd		1.15tcr + 40	3.15tcy + 40	ns
WR↑ delay time from WAIT↑	twtwr		1.15tcy + 30	3.15tcy + 30	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

- 2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)
- **3.** tcy = Tcy/4
- 4. n indicates the number of waits.

(b) Except when MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40$ to +85 °C, $V_{DD} = 2.0$ to 6.0 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth	V _{DD} = 2.7 to 6.0V	tcy - 80		ns
			tcy – 150		ns
Address setup time	tads	VDD = 2.7 to 6.0V	tcy - 80		ns
			tcy - 150		ns
Address hold time	tadh	V _{DD} = 2.7 to 6.0V	0.4tcy - 10		ns
			0.37tcy - 40		ns
Data input time from address	tadd1	V _{DD} = 2.7 to 6.0V		(3 + 2n)tcy - 160	ns
				(3 + 2n)tcy - 320	ns
	tadd2	V _{DD} = 2.7 to 6.0V		(4 + 2n)tcy - 200	ns
				(4 + 2n)tcy - 300	ns
Data input time from $\overline{RD}\downarrow$	trdd1	V _{DD} = 2.7 to 6.0V		(1.4 + 2n)tcy - 70	ns
				(1.37 + 2n)tcy - 120	ns
	trdd2	V _{DD} = 2.7 to 6.0V		(2.4 + 2n)tcy - 70	ns
				(2.37 + 2n)tcy - 120	ns
Read data hold time	trdh		0		ns
RD low-level width	trdl1	V _{DD} = 2.7 to 6.0V	(1.4 + 2n)tcy - 20		ns
			(1.37 + 2n)tcr - 20		ns
	trdl2	V _{DD} = 2.7 to 6.0V	(2.4 + 2n)tcy - 20		ns
			(2.37 + 2n)tcy - 20		ns
$\overline{WAIT}\downarrow$ input time from $\overline{RD}\downarrow$	trdwt1	V _{DD} = 2.7 to 6.0V		tcy - 100	ns
				tcy - 200	ns
	trdwt2	V _{DD} = 2.7 to 6.0V		2tcy - 100	ns
				2tcy - 200	ns
$\overline{WAIT}\downarrow$ input time from $\overline{WR}\downarrow$	twrwt	V _{DD} = 2.7 to 6.0V		2tcy - 100	ns
				2tcy - 200	ns
WAIT low-level width	tw⊤∟		(1 + 2n)tcr	(2 + 2n)tcy	ns
Write data setup time	twos	$V_{DD} = 2.7 \text{ to } 6.0 \text{V}$	(2.4 + 2n)tcy - 60		ns
			(2.37 + 2n)tcy - 100		ns
Write data hold time	twdн		20		ns
WR low-level width	twRL1	$V_{DD} = 2.7 \text{ to } 6.0 \text{V}$	(2.4 + 2n)tcy - 20		ns
			(2.37 + 2n)tcy - 20		ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

- **3.** tcy = Tcy/4
- 4. n indicates the number of waits.

(b) Except when $MCS = 1, FCC2$ to				0 10 0.0 1)	(2/2)
Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	t ASTRD	V _{DD} = 2.7 to 6.0V	0.4tcy - 30		ns
			0.37tcy - 50		ns
$\overline{\rm WR} {\downarrow}$ delay time from ASTB ${\downarrow}$	t astwr	V _{DD} = 2.7 to 6.0V	1.4tcy - 30		ns
			1.37tcy – 50		ns
ASTB \uparrow delay time from $\overline{RD}\uparrow$ in external fetch	t rdast		tcy - 10	tcy + 20	ns
Address hold time from \overline{RD} in external fetch	t rdadh		tcy – 50	tcy + 50	ns
Write data output time from $\overline{RD} \uparrow$	trdwd	V _{DD} = 2.7 to 6.0V	0.4tcy - 20		ns
			0.37tcy - 40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd	V _{DD} = 2.7 to 6.0V	0	60	ns
			0	120	ns
Address hold time from \overline{WR}	twradh	V _{DD} = 2.7 to 6.0V	tcy	tcy + 60	ns
			tcy	tcy + 120	ns
RD↑ delay time from WAIT↑	twtrd	V _{DD} = 2.7 to 6.0V	0.6tcy + 180	2.6tcy + 180	ns
			0.63tcy + 350	2.63tcy + 350	ns
WR↑ delay time from WAIT↑	twtwr	V _{DD} = 2.7 to 6.0V	0.6tcy + 120	2.6tcy + 120	ns
			0.63tcy + 240	2.63tcy + 240	ns

(b) Except when MCS = 1, PCC2 to PCC0 = 000B (TA = -40 to +85 °C, VDD = 2.0 to 6.0 V)

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

- **3.** tcy = Tcy/4
- 4. n indicates the number of waits.

(3) Serial Interface (T_A = -40 to $+85 \circ$ C, V_{DD} = 2.0 to 6.0 V)

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK0 high-/low-level width	tкнı,	VDD = 4.5 to 6.0 V	(tkcy1/2)-50			ns
	tĸ∟1		(tксү1/2)-100			ns
SI0 setup time (to SCK0↑)	tsik1	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
			300			ns
SI0 hold time (from $\overline{SCK0}$)	tksi1		400			ns
SO0 output delay time from $\overline{\text{SCK0}}\downarrow$	tkso1	C = 100pF ^{Note}			300	ns

Note C is the SO0 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY2	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK0 high-/low-level width	tкн2,	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	400			ns
	tĸ∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
			1600			ns
SI0 setup time (to $\overline{SCK0}$)	tsik2		100			ns
SI0 hold time (from $\overline{SCK0}$)	tksi2		400			ns
SO0 output delay time from $\overline{\text{SCK0}}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns
SCK0 rise, fall time	tr2, tF2	When using external device expansion function			160	ns
		When not using external device expansion function			1000	ns

Note C is the SO0 output line load capacitance.

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	R = 1 kΩ,	V_{DD} = 4.5 to 6.0 V	1600			ns
		C = 100 pF ^{Note}		3200			ns
SCK0 high-level width	tкнз		V _{DD} = 2.7 to 6.0 V	(tксүз/2)-160			ns
				(tксүз/2)–190			ns
SCK0 low-level width	tк∟з		$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	(tkcy3/2)-50			ns
				(tксүз/2)–100			ns
SB0, SB1 setup time (to $\overline{SCK0}$)	tsiкз		$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	300			ns
			$2.7~\text{V} \leq \text{V}_{\text{DD}} <\!\!4.5~\text{V}$	350			ns
				400			ns
SB0, SB1 hold time (from SCK0↑)	tksi3			600			ns
SB0, SB1 output delay time from SCK0↓	tкsoз			0		300	ns

(iii) 2-wire serial I/O mode (SCK0 ... internal clock output)

Note R and C are the SCK0, SB0 and SB1 output line load resistance and load capacitance.

(iv) 2-wire serial I/O mode (SCK0 ... external clock input)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү4	V _{DD} = 2.7 to 6.0 V		1600			ns
				3200			ns
SCK0 high-level width	tĸн4	V _{DD} = 2.7 to 6.0	V	650			ns
				1300			ns
SCK0 low-level width	tĸ∟4	V _{DD} = 2.7 to 6.0	V	800			ns
				1600			ns
SB0, SB1 setup time (to $\overline{SCK0}$)	tsik4			100			ns
SB0, SB1 hold time (from $\overline{SCK0}$)	tksi4			tксү4/2			ns
SB0, <u>SB1</u> output delay time	tksO4	R = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
from SCK0↓		C = 100 pF ^{Note}		0		500	ns
SCK0 rise, fall time	tr4, tr4	When using external device				160	ns
	LF4	expansion functi When not using device expansio	external			1000	ns

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү5	R = 1 kΩ,	V _{DD} = 2.7 to 6.0 V	10			μs
		C = 100 pF ^{Note}		20			μs
SCL high-level width	tкн5		V _{DD} = 2.7 to 6.0 V	tксү₅–160			ns
				tксү5–190			ns
SCL low-level width	tĸl5		V _{DD} = 4.5 to 6.0 V	tксү5–50			ns
				tксү5–100			ns
SDA0, SDA1 setup time (to SCL [↑])	tsik5		V _{DD} = 2.7 to 6.0 V	200			ns
				300			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tksi5			0			ns
SD0, SD1 output delay time from	tkso5		V _{DD} = 4.5 to 6.0 V	0		300	ns
SCL↓				0		500	ns
SDA0, SDA1↓ from SCL↑	tкsв			200			ns
or SDA0, SDA1↑ from SCL↑							
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns

(v) I²C bus mode (SCL ... internal clock output)

Note R and C are the SCL, SDA0 and SDA1 output line load resistance and load capacitance.

(vi) I²C mode (SCL ... external clock input)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү6			1000			ns
SCL high-/low-level width	tкн6, tк∟6			400			ns
SDA0, SDA1 setup time (to SCL [↑])	tsik6			200			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tksi6			0			ns
SD0, SD1 output delay time from	tkso5	R = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
SCL↓		C = 100 pF ^{Note}		0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns
SCL rise, fall time	tr6, tr6	When using externation expansion function				160	ns
		When not using device expansio				1000	ns

Note R and C are the SDA0 and SDA1 output line load resistance and load capacitance.

(b) Serial interface channel 1

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү7	$4.5~V \le V_{\text{DD}} \le 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK1 high-/low-level width	idth tкн7, tкL7	V _{DD} = 4.5 to 6.0 V	(tксү7/2)—50			ns
			(tксү7/2)–100			ns
SI1 setup time (to SCK1↑)	tsik7	$4.5~V \le V_{\text{DD}} \le 6.0~V$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
			300			ns
SI1 hold time (to $\overline{\text{SCK1}}$)	tksi7		400			ns
SO1 output delay time from $\overrightarrow{\text{SCK1}}\downarrow$	tkso7	C = 100 pF ^{Note}			300	ns

(i) 3-wire serial I/O mode (SCK1...internal clock output)

Note C is the SO1 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK1...external clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүв	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK1 high-/low-level width	tкнв,	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	400			ns
	tĸ∟8	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
			1600			ns
SI1 setup time (to SCK1↑)	tsik8		100			ns
SI1 hold time (to SCK1↑)	tksi8		400			ns
SO1 output delay time from SCK1	tkso8	C = 100 pF ^{Note}			300	ns
SCK1 rise, fall time	tr8, tF8	When using external device expansion function			160	ns
		When not using external device expansion function			1000	ns

Note C is the SO1 output line load capacitance.

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүэ	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 6.0 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK1 high-/low-level width	tкнэ,	V _{DD} = 4.5 to 6.0 V	(tксүя/2)–50			ns
	tĸ∟9		(tксүэ/2)–100			ns
SI1 setup time (to $\overline{\text{SCK1}}$)	tsik9	$4.5~V \leq V_{DD} \leq 6.0~V$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
			300			ns
SI1 hold time (from $\overline{\text{SCK1}}$)	tksi9		400			ns
SO1 output delay time from $\overline{\text{SCK1}} \downarrow$	tks09	C = 100 pF ^{Note}			300	ns
STB↑ from SCK1↑	tsbd		(tксүэ/2)–100		tксү9/2+100	ns
Strobe signal high-level width	tsвw	V _{DD} = 2.7 to 6.0 V	tксү9–30		tксү9+30	ns
			tксү9–60		tксү9 +60	ns
Busy signal setup time (to busy signal detection timing)	tBYS		100			ns
Busy signal hold time	tвүн	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 6.0 \text{ V}$	100			ns
(from busy signal detection timing)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
			200			ns
$\overline{\text{SCK1}}\downarrow$ from busy inactivation	tsps				2тксүэ	ns

(iii) Automatic transmit/receive function 3-wire serial I/O mode	e (SCK1 internal clock output)
--	--------------------------------

Note C is the SO1 output line load capacitance.

(iv) Automotic transmit/reasive	function 2 wire carial 1/0 mod	e (SCK1 external clock input)
(IV) Automatic transmitreceive	F IUNCTION S-WITE Serial I/O mou	e (Sort external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү10	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK1 high-/low-level width	t кн10,	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	400			ns
	t KL10	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
			1600			ns
SI1 setup time (to SCK1↑)	tsik10		100			ns
SI1 hold time (from $\overline{\text{SCK1}}$)	t KSI10		400			ns
SO output delay time from $\overline{\text{SCK1}}\downarrow$	tkso10	C = 100 pF ^{Note}			300	ns
SCK1 rise, fall time	tr10, tF10	When using external device expansion function			160	ns
		When not using external device expansion function			1000	ns

Note C is the SO1 output line load capacitance.

*

(c) Serial interface channel 2

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkCY11	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
SCK2 high-/low-level width	t кн11,	V _{DD} = 4.5 to 6.0 V	(tксү11/2)-50			ns
	t KL11		(tkcy11/2)-100			ns
SI2 setup time (to SCK2↑)	tsik11	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
			300			ns
SI2 hold time (to $\overline{\text{SCK2}}$)	t кsi11		400			ns
SO2 output delay time from SCK2↓	tkso11	C = 100 pF ^{Note}			300	ns

(i) 3-wire serial I/O mode (SCK2...internal clock output)

Note C is the SO2 output line load capacitance.

(ii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 6.0~V$			78125	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			39063	bps
					19531	bps

(iii) UART mode (External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t ксү12	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
			3200			ns
ASCK high-/low-level width	t кн12,	$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 6.0~\text{V}$	400			ns
	tKL12	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
			1600			ns
Transfer rate		$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 6.0~\text{V}$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			19531	bps
					9766	bps
SCK rise, fall time	tr12, tF12	V_{DD} = 4.5 to 6.0 V, when not using external device expansion function			1000	ns
					160	ns

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

TI Timing

Read/Write Operations

External fetch (no wait):

External fetch (wait insertion):

External data access (no wait):

External data access (wait insertion):

Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1, 2, 7, 8, 11n = 2, 8

I²C bus mode:

Automatic transmit/receive function 3-wire serial I/O mode:

Automatic transmit/receive function 3-wire serial I/O mode (busy processing):

Note The signal is not actually low here, but is represented in this way to show the timing.

UART mode (external Clock Input):

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error ^{Note}		$2.7 \text{ V} \leq \text{AV}_{\text{REF0}} \leq \text{AV}_{\text{DD}}$			1.4	%
Conversion time	tсолу		19.1		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	Vian		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		2.7		AVdd	V
AVREFO-AVSS resistance	RAIREFO		4			kΩ

A/D Converter Characteristics (TA = -40 to +85 °C, AVDD = VDD = 2.7 to 6.0 V, AVss = Vss = 0 V)

Note Excluding quantization error ($\pm 1/2$ LSB). Shown as a percentage of the full scale value.

Remark fxx : Main system clock frequency (fx or fx/2)

fx : Main system clock oscillatior frequency

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Total error		$R = 2 M\Omega^{Note 1}$	R = 2 MΩ ^{Note 1}			1.2	%
		$R = 4 M\Omega^{Note 1}$	R = 4 MΩ ^{Note 1}			0.8	%
		$R = 10 M\Omega^{Note}$	R = 10 MΩ ^{Note 1}			0.6	%
Settling time		C = 30 pF ^{Note 1}	$4.5~V \leq AV_{\text{REF1}} \leq 6.0~V$			10	μs
			$2.7 \text{ V} \le \text{AV}_{\text{REF1}} < 4.5 \text{ V}$			15	μs
			$2.0 \text{ V} \leq \text{AV}_{\text{REF1}} < 2.7 \text{ V}$			20	μs
Output resistor	Ro	Note 2			10		kΩ
Analog reference voltage	AV _{REF1}			2.0		Vdd	V
AVREF1 - AVSS resistance	RAIREF1	DACS0, DACS	1 = 55H Note 2	4	8		kΩ

D/A Converter Characteristics (T_A = -40 to +85 °C, V_{DD} = 2.0 to 6.0 V, AV_{SS} = V_{SS} = 0 V)

Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.

2. Value for one D/A converter channel.

Remark DACS0, DACS1: D/A conversion value setting register 0, 1.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS

 $(T_A = -40 \text{ to } +85 \ ^\circ\text{C})$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.8		6.0	V
Data retention supply current	Idddr	V _{DDDR} = 1.8 V Subsystem clock stopped, feedback resister disconnected		0.1	10	μA
Release signal setup time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /fx		ms
		Release by interrupt request		Note		ms

Note 2¹²/fxx, or 2¹⁴/fxx through 2¹⁷fxx can be selected by bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Remark fxx : Main system clock frequency (fx or fx/2)

fx : Main system clock oscillatior frequency

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (STOP mode release by standby release signal: interrupt request signal)

Interrupt Request Input Timing

RESET Input Timing

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) **PROM Write Mode** (T_A = 25 \pm 5 °C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih	Vін		0.7 Vdd		Vdd	V
Input voltage, low	VIL	Vil		0		0.3 Vdd	V
Output voltage, high	Vон	Vон	Іон = −1 mA	Vdd - 1.0			V
Output voltage, low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	Iц	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μΑ
VPP supply voltage	Vpp	Vpp		12.2	12.5	12.8	V
Vod supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	Ірр	PGM = VIL			50	mA
VDD supply current	ldd	lcc				50	mA

(2) **PROM Read Mode** (T_A = 25 \pm 5 °C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih	Vін		0.7 Vdd		Vdd	V
Input voltage, low	VIL	VIL		0		0.3 Vdd	V
Output voltage, high	Vон1	Vон1	Іон = −1 mA	Vdd - 1.0			V
	Vон2	Vон2	Іон = −100 μА	Vdd - 0.5			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μΑ
Output leakage current	Ilo	Ilo	$0 \le V_{\text{OUT}} \le V_{\text{DD}}, \ \overline{\text{OE}} = V_{\text{IH}}$	-10		+10	μΑ
VPP supply voltage	Vpp	Vpp		Vdd - 0.6	Vdd	Vdd + 0.6	V
Vbb supply voltage	Vdd	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	Ірр	Vpp = Vdd			100	μΑ
VDD supply current	lod	ICCA1	$\overline{CE} = VIL, VIN = VIH$			50	mA

Note Correspond symbols for the μ PD27C1001A.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (T_A = 25 \pm 5 °C, V_DD = 6.5 \pm 0.25 V, V_PP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{OE}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{OE}\downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE}\uparrow$)	tан	tан		2			μs
	t ahl	t AHL		2			μs
	tанv	t ah∨		0			μs
Input data hold time (from $\overline{OE}\uparrow$)	tdн	tон		2			μs
Data output float delay time from $\overline{OE} \uparrow$	t df	tdf		0		250	ns
V_{PP} setup time (to $\overline{OE}\downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE}\downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tew		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\text{OE}} \downarrow$	toe	toe				1	μs
OE pulse width during data latching	t∟w	t∟w		1			μs
PGM setup time	tрgмs	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (T_A = 25 \pm 5 °C, V_DD = 6.5 \pm 0.25 V, V_PP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{PGM}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{PGM}\downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE}\uparrow$)	tан	tан		2			μs
Input data hold time (from PGM↑)	tон	tон		2			μs
Data output float delay time from $\overline{OE} \uparrow$	t DF	t df		0		250	ns
V_{PP} setup time (to $\overline{PGM}\downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to PGM↓)	tvds	tvcs		1.0			ms
Program pulse width	tPW	tew		0.095	0.1	0.105	ms
Valid data delay time from $\overline{OE}\downarrow$	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Correspond symbols for the μ PD27C1001A.

(2) **PROM Read Mode** (T_A = 25 \pm 5 °C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time from address	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
Data output delay time from $\overline{CE} \downarrow$	tce	tce	$\overline{OE} = V_{IL}$			800	ns
Data output delay time from $\overline{OE} \downarrow$	toe	toe	$\overline{CE} = V_{IL}$			200	ns
Data output float delay time from \overline{OE}	tdf	t DF	$\overline{CE} = V_{IL}$	0		60	ns
Data hold time from address	tон	tон	$\overline{CE} = \overline{OE} = VIL$	0			ns

Note Correspond symbols for the μ PD27C1001A.

(3) **PROM Programming Mode Setting** (TA = 25 °C, Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	tsма		10			μs

PROM Write Mode Timing (page program mode)

PROM Write Mode Timing (byte program mode)

- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of +12.5 V to VPP may have an adverse effect on reliability.

PROM Read Mode Timing

- **Notes** 1. If you want to read within the tacc range, make the \overline{OE} input delay time from the fall of \overline{CE} a maximum of tacc toe.
 - 2. top is the time from when either \overline{OE} or \overline{CE} first reaches VIH.

PROM Programming Mode Setting Timing

10. CHARACTERISTIC CURVES (for reference only)

IDD VS VDD (fx = 5.0 MHz, fxx = 2.5 MHz)

Supply Voltage VDD [V]

Supply Voltage VDD [V]

11. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.20±0.20	0.677±0.008
В	14.00±0.20	0.551 +0.009 -0.008
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
н	0.32±0.06	$0.013^{+0.002}_{-0.003}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.60±0.20	0.063±0.008
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$
М	$0.17 \substack{+0.03 \\ -0.07}$	$0.007^{+0.001}_{-0.003}$
N	0.10	0.004
Р	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	1.70 MAX.	0.067 MAX.
		P80GC-65-8BT

Remark The package dimensions and materials of the ES version(s) are the same as those of the mass production product.

80 PIN CERAMIC WQFN

ΝΟΤΕ

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

		X80KW-65A-1
ITEM	MILLIMETERS	INCHES
А	14.0±0.2	0.551±0.008
В	13.6	0.535
С	13.6	0.535
D	14.0±0.2	0.551±0.008
F	1.84	0.072
G	3.6 MAX.	0.142 MAX.
Н	0.45 ± 0.10	0.018+0.004
Ι	0.06	0.003
J	0.65 (T.P.)	0.024 (T.P.)
К	1.0±0.15	0.039 ^{+0.007} _{-0.006}
Q	C 0.3	C 0.012
R	0.825	0.032
S	0.825	0.032
Т	R 2.0	R 0.079
U	9.0	0.354
U1	2.1	0.083
W	0.75±0.15	0.030 ^{+0.006} 0.007
Z	0.10	0.004

X80KW-65A-1

*** 12. RECOMMENDED SOLDERING CONDITIONS**

These products should be soldered and mounted under the conditions recommended below.

For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 12-1. Surface Mount Type Soldering Conditions

μ PD78P058YGC-8BT: 80-Pin Plastic QFP (14 \times 14 mm)

Soldering Method(s)	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 secs. max. (210 °C min.), Number of times: twice max., Number of days: 7 ^{Note} (after that, 125 °C prebaking for 10 hours is necessary) < Precaution> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	IR35-107-2
VPS	Package peak temperature: 215 °C, Time: 40 secs. max. (200 °C min.), Number of times: twice max., Number of days: 7 ^{Note} (after that, 125 °C prebaking for 10 hours is necessary) < Precaution> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	VP15-107-2
Wave soldering	Solder bath temperature: 260 °C max., Time: 10 secs. max., Number of times: once, Preheating temperature: 120 °C max. (package surface temperature), Number of days: 7 Note (after that, 125 °C prebaking for 10 hours is necessary) <precaution> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.</precaution>	WS60-107-1
Partial pin heating	Pin temperature: 300 °C max., Time: 3 secs. max. (per device side)	_

Note For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.

Caution Use of more than one soldering method should be avoided (except in the case of partial pin heating).

\star

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using μ PD78P058Y. Also refer to **(5) Notes on using development tools**.

(1) Language Processing Software

RA78K/0	78K/0 series common assembler package
CC78K/0	78K/0 series common C compiler package
DF78054	μ PD78054 subseries device file
CC78K/0-L	78K/0 series common C compiler library source file

(2) PROM Writing Tools

PG-1500	PROM programmer
PA-78P054GC PA-78P054KK-T	Programmer adapters connected to PG-1500
PG-1500 controller	PG-1500 control program

(3) Debugging Tools

• When in-circuit emulator IE-78K0-NS is used

IE-78K0-NS ^{Note}	In-circuit emulator common to 78K/0 series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C ^{Note}	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-CD-IF ^{Note}	PC card and interface cable used when notebook type PC-9800 series is used as host machine
IE-70000-PC-IF-C ^{Note}	Interface adapter used when IBM PC/AT TM or compatible machine is used as host machine
IE-780308-NS-EM1 ^{Note}	Emulation board common to μ PD780308 subseries
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
ID78K0-NS ^{Note}	Integrated debugger for IE-78K0-NS
SM78K0	78K/0 series common system simulator
DF78054	μ PD78054 subseries device file

Note Under development

• When in-circuit emulator IE-78001-R-A

IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 series
IE-70000-98-IF-B IE-70000-98-IF-C ^{Note}	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-PC-IF-B IE-70000-PC-IF-C ^{Note}	Interface adapter used when IBM PC/AT or compatible machine is used as host machine
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine
IE-780308-NS-EM1 ^{Note} IE-780308-R-EM	Emulation board common to μ PD780308 subseries
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board necessary when using IE-780308-NS-EM1 on IE-78001-R-A
NP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Socket mounted on board of target system created for 80-pin plastic QFP (GC-8BT type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 series
DF78054	Device file common to μ PD78054 subseries

Note Under development

(4) Real-Time OS

RX78K/0	78K/0 series real-time OS
MX78K0	78K/0 series OS

(5) Notes on using development tools

- Use ID78K0-NS, ID78K0, and SM78K0 in combination with DF78054.
- Use CC78K/0 and RX78K/0 in combination with RA78K/0 and DF78054.
- NP-80GC is a product of Naito Densei Machida Mfg. Co., Ltd. (TEL (044) 822-3813). Consult your NEC distributor when purchasing these products.
- For development tools made by third parties, refer to 78K/0 Series Selection Guide (U11126E).
- The host machine corresponding to each software package is as follows:

Host Machine	PC	EWS	
[OS] Software	PC-9800 series [Windows™] IBM PC/AT Compatible Machines [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™]] NEWS (RISC) [™] [NEWS-OS [™]]	
RA78K/0	Note	0	
CC78K/0	Note	0	
PG-1500 controller	Note	_	
ID78K0-NS	0	_	
ID78K0	0	0	
SM78K0	0	_	
RX78K/0	Note	0	
MX78K0	Note	0	

Note This software is based on DOS.

CONVERSION SOCKET (EV-9200GC-80) DRAWING AND RECOMMENDED BOARD MOUNTING PATTERN

Figure A-1. EV-9200GC-80 Drawing (for reference only)

EV-9200GC-80-G1E

ITEM	MILLIMETERS	INCHES
А	18.0	0.709
В	14.4	0.567
С	14.4	0.567
D	18.0	0.709
E	4-C 2.0	4-C 0.079
F	0.8	0.031
G	6.0	0.236
Н	16.0	0.63
Ι	18.7	0.736
J	6.0	0.236
К	16.0	0.63
L	18.7	0.736
М	8.2	0.323
Ν	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	ø2.3	ø0.091
S	Ø1.5	Ø0.059

Figure A-2. EV-9200GC-80 Recommended Board Mounting Pattern (for reference only)

EV-9200GC-80-P1E

ITEM	MILLIMETERS	INCHES
А	19.7	0.776
В	15.0	0.591
С	0.65±0.02×19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$
D	0.65±0.02×19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$
E	15.0	0.591
F	19.7	0.776
G	6.0±0.05	$0.236^{+0.003}_{-0.002}$
Н	6.0±0.05	$0.236\substack{+0.003\\-0.002}$
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	\$\$\phi_2.36±0.03\$	Ø0.093 ^{+0.001} -0.002
К	ø2.3	¢0.091
L	Ø1.57±0.03	Ø0.062 ^{+0.001} -0.002

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

***** APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Docur	Document No.	
		Japanese	English	
μPD78052Y, 78053Y, 78054Y, 78055Y, 78056Y, 78058Y Data Sheet		U10906J	U10906E	
µPD78P058Y Data Sheet		U10907J	This document	
μPD78054, 78054Y Subseries User's Manual		U11747J	U11747E	
78K/0 Series User's Manual (Instruction)		U12326J	U12326E	
78K/0 Series Instruction Set		U10904J	_	
78K/0 Series Instruction Table		U10903J	_	
μPD78054Y Subseries Special Function Register Table		U10087J	_	
78K/0 Series Application Note	Basic (III)	U10182J	U10182E	

Development Tool Related Documents (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly language	U11789J	U11789E
RA78K Series Structured Assembler Preprocess	or	U12323J	EEU-1402
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	U12322E
PG-1500 PROM Programmer		U11940J	U11940E
PG-1500 Controller PC-9800 Series (MS-DOS [™]) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS [™]) Based		EEU-5008	U10540E
IE-78K0-NS		Planned	Planned
IE-78001-R-A		Planned	Planned
IE-780308-NS-EM1		Planned	Planned
IE-780308-R-EM		U11362J	U11362E
EP-78230		EEU-985	EEU-1515

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

Development Tool Related Documents (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K0 System Sumilator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External part user open interface specifications	U10092J	U10092E
ID78K0-NS Integrated Debugger	Reference	U12900J	Planned
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	—
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E

Embedded Software Related Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Fundamentals	U11537J	U11537E
	Installation	U11536J	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257J	U12257E

Other Related Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Quality/Reliability Handbook	C12769J	_
Microcomputer-Related Product Guide (Products by Other Manufacturers)	U11416J	_

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

J97. 8

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed : μ PD78P058YKK-T The customer must judge the need for license : μ PD78P058YGC-8BT

FIP, IEBus and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.