International

HEXFRED™

HFA16PA120C

Ultrafast, Soft Recovery Diode

Features

- Ultrafast Recovery
- Ultrasoft Recovery
- Very Low I_{RRM}
 Very Low Q_{rr}
- Specified at Operating Conditions

- Benefits
- Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- Higher Frequency Operation
- Reduced Snubbing
- Reduced Shubbing
 Reduced Parts Count
- · Reduced Fails Court

 V_R = 1200V V_F (max.) = 3.3V $I_{F(AV)}$ = 8.0A I_{RRM} (typ.) = 4.5A * per Leg

Description

International Rectifier's HFA16PA120C is a state of the art ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 1200 volts and 8 amps continuous current, the HFA16PA120C is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current ($I_{\rm RRM}$) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA16PA120C is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

Absolute Maximum Ratings (per Leg)

	Parameter	Max	Units
V _R	Cathode-to-Anode Voltage	1200	V
I _F @ T _C = 100°C	Continuous Forward Current	8	A
IFSM	Single Pulse Forward Current	130	
IFRM	Maximum Repetitive Forward Current	32	
P _D @ T _C = 25°C	Maximum Power Dissipation	73.5	W
P _D @ T _C = 100°C	Maximum Power Dissipation	29	
TJ	Operating Junction and	- 55 to 150	°C
T _{STG}	Storage Temperature Range		

Electrical Characteristics (per Leg) O T_J = 25°C (unless otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
V _{BR}	Cathode Anode Breakdown	1200	-	-	V	I _R = 100μA
	Voltage					
V _{FM}	Max. Forward Voltage	-	2.6	3.3	v	I _F = 8.0A
		-	3.4	4.3		I _F = 16A
		-	2.4	3.1		I _F = 8.0A, T _J = 125°C
I _{RM}	Max. Reverse Leakage	-	0.31	10	μA	$V_R = V_R$ Rated
	Current	-	135	1000		T_J = 125°C, V_R = 0.8 x V_R Rated
CT	Junction Capacitance	-	11	20	pF	V _R = 200V
Ls	Series Inductance	-	8.0	-	nH	Measured lead to lead 5mm from pkg

body

Dynamic Recovery Characteristics (per Leg) @ T_J = 25°C (unless otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Condition	S
t _{rr}	Reverse Recovery Time	-	28	-	ns	I _F = 1.0A, di _f /dt = 200A/µs, V _R = 30V	
t _{rr1}		-	63	95		T _J = 25°C	I _F = 8.0A
t _{rr2}		-	106	160		T _J = 125°C	V _R = 200V
I _{RRM1}	Peak Recovery Current	-	4.5	8.0	А	T _J = 25°C	di _f /dt = 200A/µs
I _{RRM2}		-	6.2	11		T _J = 125°C	
Q _{rr1}	Reverse Recovery Charge	-	140	380	nC	$T_J = 25^{\circ}C$	
Q _{rr2}		-	335	880		T _J = 125°C	
$di_{(rec)M}/dt1$ Peak Rate of Recovery		-	133	-	A/µs	$T_J = 25^{\circ}C$	
$di_{(rec)M}/dt2$ Current During tb		-	85	-		T _J = 125°C	

Thermal - Mechanical Characteristics

	Parameter	Min	Тур	Max	Units
T _{lead} ①	Lead Temperature	-	-	300	°C
R _{thJC}	Thermal Resistance, Junction to Case	-	-	1.7	k/W
R _{thJA} ②	Thermal Resistance, Junction to Ambient	-	-	40	
R _{thCS3}	Thermal Resistance, Case to Heat Sink	-	0.25	-	
Wt	Weight	-	6.0	-	g
		-	0.21	-	(oz)
	Mounting Torque	6.0	-	12	Kg-cm
		5.0	-	10	lbf•in

① 0.063 in. from Case (1.6mm) for 10 sec

② Typical Socket Mount

3 Mounting Surface, Flat, Smooth and Greased

International **IOR** Rectifier

HFA16PA120C Bulletin PD-2.361 rev. B 05/01

pecified)

International

www.irf.com

Fig. 9- Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

HFA16PA120C

Outline Table

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 05/01

www.irf.com