L3100B L3100B1

TRISI

UNIDIRECTIONAL PROGRAMMABLE VOLTAGE AND CURRENT SUPPRESSOR

- HIGH CURRENT CAPABILITY
- PROGRAMMABILITY BOTH IN VOLTAGE AND CURRENT

SGS-THOMSON MICROELECTRONICS

AUTOMATIC RECOVERY

DESCRIPTION

The L3100B/B1 is a transient overvoltage suppressor/overcurrent arrester designed to protect sensitive components in electronic telephones and telecommunication equipments against transients caused by lightning, induction from power lines, etc.

The L3100B/B1 characteristic, that is its firing voltage and current, can be easily programmed by means of inexpensive external components; more over, since this device recoveres automatically when the surge current falls below a fixed holding current, it may be used on remotely supplied lines. Finally, if destroyed, it becomes a permanent short circuit.

ABSOLUTE RATINGS (limiting values) $(T_j = 25 \text{ °C})$

Symbol	Parameter	Value	Unit		
Ipp	Peak Pulse Current	1 ms expo	150	A	
		8-20 µs expo*	250		
ITSM	Non Repetitive Surge Peak on-state Current	t _p = 10 ms - Sinus	50	A	
di/dt	Critical Rate of Rise of on-state Current	Non repetitive	100	A/µs	
T _{stg} Tj	Storage and Junction Temperature Range	- 40 to 150 150	°C C		

THERMAL RESISTANCE

Symbol	Parameter		Value	Unit	
R _{th(j-a)}	Junction to Ambient		80	°C/W	
ANSI STE	C62.	Pulse wave for		ve form	

ELECTRICAL CHARACTERISTICS $(T_i = 25 \ ^{\circ}C)$

Symbol	Parameter							
V _{RM}	Stand-off Voltage			1				
VBR	Breakdown Voltage							
V _{BO}	Clamping Voltage							
Iн	Holding Current							
VT	On-state Voltage @ IT							
IBO	Breakover Current							
lpp	Peak-pulse Current							
V _{GN}	Gate Voltage							
I _{GN}	Firing Gate N Current							
V _{RGN}	Reverse Gate N Voltage							
I _{GP}	Firing Gate P Current							

OPERATION WITHOUT GATE

Туре	I _{RM} @V _{RM} max.				V _{BO} @ I _{BO} max. min. max. See note 2			I _H min.	V _T typ. I _T = 1 A	C max. V _R = 5 V F = 1 MHz	
	(µA)	(V)	(∀)	(∀)	(mA)	(∀)	(mA)	(mA)	(mA)	(∀)	(pF)
L3100B/B1	6 40		255 (3) 265 (4)		1	350	20 0	500	210 (3) 280 (4)	2	100

OPERATION WITH GATES

Туре	()	GN V) 00 mA	(m	A) = 100 V	V _{RGN} (V) I _G = -1 mA		I _{GP} (mA) V _A - C = 100 V	
	min.	max.	min.	max.	min.	max.	min.	max.
L3100B/B1	0.6	1.8	30	200	0.7			150

Notes : 1. Reverse characteristic : $I_{\textrm{R}} < 1$ mA @ $V_{\textrm{R}} = 0.7 V.$

These devices are not designed to function as zeners ; continuous operation between 1 mA and I_{bo} will damage them.
L3100B1

4. L3100B

PACKAGE MECHANICAL DATA

MINIDIP Plastic

CONNECTION DIAGRAM

SCHEMATIC DIAGRAM

Fig.4 - Junction capacitance versus reverse applied voltage.

D89L310081P4