TURBOSWITCH тм "B". ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2{ }^{* 60 \mathrm{~A}}$
$\mathrm{~V}_{\mathrm{RRM}}$	600 V
t_{rr} (typ)	65 ns
$\mathrm{~V}_{\mathrm{F}}$ (max)	1.3 V

FEATURES AND BENEFITS

- SPECIFIC TO THE FOLLOWING OPERATIONS: Snubbing or clamping, demagnetization and rectification.
- ULTRA-FAST, SOFT AND NOISE-FREE RECOVERY.
- VERY LOW OVERALL POWER LOSSES AND PARTICULARY LOW FORWARD VOLTAGE.
- DESIGNED FOR HIGH PULSED CURRENT OPERATIONS.

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600 V to 1200 V .
TURBOSWITCH, B family, drastically cuts losses in all high voltage operations which require extremely fast, soft and noise-free power diodes.
They are particularly suitable in the primary circuit

of an SMPS as snubber, clamping or demagnetizing diodes, and also in most power converters as high performance rectifier diodes. Packaged in ISOTOP, these 600 V devices are particularly intended for use on 240 V domestic mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {RRM }}$	Repetitive peak reverse voltage	600	V
V RSM	Non repetitive peak reverse voltage	600	V
$\mathrm{I}_{\text {F(RMS })}$	RMS forward current	150	A
$\mathrm{I}_{\text {FRM }}$	Repetitive peak forward current $(\mathrm{tp}=5 \mu \mathrm{~s}, \mathrm{f}=1 \mathrm{kHz})$	2100	A
$\mathrm{~T}_{\mathrm{j}}$	Max operating junction temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

(*) : Tin plated Fast-on version is also available (without V suffix).
TM : ISOTOP and TURBOSWITCH are trademarks of SGS-THOMSON Microelectronics.

STTB12006T(V) 1/2

THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
Rin(i-c)	Junction to case thermal resistance	Per diode	085	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Total	0.47	
		Coupling	0.1	
P_{1}	Conduction power dissipation (see fig. 5)	$\begin{aligned} & \text { Per diode } \\ & \mathrm{IF}(\mathrm{AV})=60 \mathrm{~A} \quad \delta=0.5 \\ & \mathrm{TC}=58^{\circ} \mathrm{C} \end{aligned}$	108	w
$\mathrm{P}_{\text {max }}$	Total power dissipation $P \max =P 1+P 3 \quad(P 3=10 \% P 1)$	Per diode $T \mathrm{C}=48^{\circ} \mathrm{C}$	120	w

STATIC ELECTRICAL CHARACTERISTICS (see Fig.5)

Symbol		Parameter	Test Conditions		Min	Typ	Max	Unit
V_{F}	-	Forward voltage drop	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1.4 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
If	-	Reverse leakage current	$\begin{aligned} & V_{R}=0.8 \\ & x V_{R R M} \end{aligned}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 200 \\ 9 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$

Test pulses widths: * $1 \mathrm{p}=380 \mu \mathrm{~s}$, duty cycle $<2 \%$

* tp $=5 \mathrm{~ms}$, duty cycle $<2 \%$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING (see Fig.6)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$t_{\text {rr }}$	Reverse recovery time	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{I} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{Irr}=0.25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{~d} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$		65	115	ns
Ifm	Maximum reverse recovery current	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad V R=400 \mathrm{~V} \quad I_{F}=60 \mathrm{~A} \\ & \mathrm{~d} \mathrm{l}_{\mathrm{F}} / \mathrm{dt}=-480 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$			TBD	A
S factor	Softness factor	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=60 \mathrm{~A} \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		TBD		1

TURN-ON SWITCHING (see Fig.7)

Symbol	Parameter	Test Conditions	Min	Typ	. Max	Unit
tror	Forward recovery time	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~A}, \mathrm{~d} \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=480 \mathrm{~A} / \mu \mathrm{S} \\ & \text { measured at, } 1.1 \times \mathrm{V}_{\mathrm{F}} \mathrm{max} \end{aligned}$			TBD	nS
$V_{F p}$	Peak forward voltage	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=480 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$			TBD	V

TBD : To Be Defined

APPLICATION DATA

The TURBOSWITCH " B " is especially designed to provide the lowest overall power losses in any application such as snubbing,clamping,
demagnetization and rectification. In such applications (fig. 1 to fig.4), the way of calculating the power losses is given below :

Fig. 1 : SNUBBER DIODE.

Fig. 3 : DEMAGNETIZING DIODE.

Fig. 2 : CLAMPING DIODE.

Fig. 4 : RECTIFIER DIODE.

STTB12006T(V)1/2

APPLICATION DATA (Cont'd)

Fig. 5: STATIC CHARACTERISTICS

Fig. 6: TURN-OFF CHARACTERISTICS

Fig. 7: TURN-ON CHARACTERISTICS

Conduction losses :
$P 1=V_{10} \cdot I F(A V)+R_{d} \cdot I^{2}(R M S)$
with

$$
\begin{gathered}
\mathrm{V}_{\mathrm{t} 0}=1.00 \mathrm{~V} \\
\mathrm{R}_{\mathrm{d}}=0.005 \mathrm{Ohm} \\
\left(\text { Max values at } 125^{\circ} \mathrm{C}\right. \text {) }
\end{gathered}
$$

Reverse losses :
$\mathrm{P} 2=\mathrm{V}_{\mathrm{R}} \cdot \operatorname{lR} \cdot(1-\delta)$

Turn-off losses :

$$
\mathrm{P} 3=\frac{V_{R} \times I_{A M^{2}} \times S \times F}{6 \times d I_{F} / d t}
$$

Turn-off losses :
(with non negligible serial inductance)

$$
\begin{aligned}
\mathrm{P}^{\prime}= & \frac{V_{R} \times I_{R M}{ }^{2} \times S \times F}{6 \times d l_{F} / d t}+ \\
& \frac{L \times I_{R M}{ }^{2} \times F}{2}
\end{aligned}
$$

P3 and P3' are suitable for power MOSFET and IGBT

Turn-on losses :
P4 = 0.4 (VFP - VF) . IFmax . tir . F

