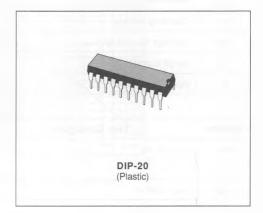


TH6P04T6V5CL TH6P04T25CL

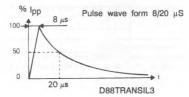

TRANSIL ARRAY FOR DATA LINE PROTECTION

DESCRIPTION

Developed specially for data line protection at the PC Board Level, the component offers 8 protective Bidirectionnal devices with common bus connections per package.

In addition to the parallel protection given by the Transils ®, the pin-die connection wires provide a serie protection in case of short circuit on the line. Therefore this device is a feature of 8 serie/parallel protection elements.

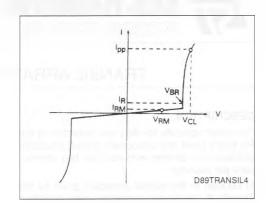
The dual in line design allows compatible packaging for microprocessors, memories and controllers.



ABSOLUTE RATINGS (limiting values) $(0^{\circ}C \le T_{amb} \le 70^{\circ}C)$

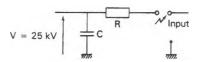
Symbol	Parameter	Value	Unit	
l _{pp}	Peak Pulse Power for 8.20 µs Exponential Pulse	See note 1	40	A
l ² t	Wire I ² t Value	See note 1	0.6	A ² s
ESD	Electrostatic Overstress	See note 2	25	kV
T _{stg} T _j	Storage and Junction Temperature Range		- 55 to 150 125	°C °

Notes: 1. For surges upper than the maximum value specified, the input/output will present first a short circuit to the common bus line and after an open circuit caused by the wire


2. According to MIL STD 883C method 3015-2.

ELECTRICAL CHARACTERISTICS

 $0 \ ^{\circ}C \leq T_{amb} = T_{j} \leq 70 \ ^{\circ}C$


Symbol	Parameter	
VRM	Stand-off Voltage	
V _{BR}	Breakdown Voltage	
V _{CL}	Clamping Voltage	
IRM	Leakage Current @ V _{RM}	
lpp	Surge Current	
С	Input Capacitance	

Symbol	Test Conditions	Types	Min.	Тур.	Max.	Unit
VBR	$I_{R} = \pm 1 \text{ mA}$	TH6P04T6V5CL	± 6.5			V
		TH6P04T25CL	± 25			
IRM	V _{RM} = ± 6 V	TH6P04T6V5CL			± 50	μA
	$V_{RM} = \pm 24 V$	TH6P04T25CL			± 10	
C1	Each Input Pin to Ground at 0 V Bias	TH6P04T6V5CL			700	pF
		TH6P04T25CL			500	
C2	Each Input Pin to Ground at 5 V Bias	TH6P04T6V5CL			500	рF
		TH6P04T25CL			300	
V _{CL} 1	$I_{pp} = 40 \text{ A}$ 8-20 μ s to all Inputs Sequentially (see note 1)	TH6P04T6V5CL			± 12	V
		TH6P04T25CL			± 38	
V _{CL} 2	$8\text{-}20\ \mu\text{s}$ Simultaneously 80 A peak pulse current to all inputs with a 10 Ω resistor in serie. (see note 1)	TH6P04T6V5CL			± 12	V
		TH6P04T25CL			± 35	
V _{CL} 3	25 kV ESD Overstress (see notes 1-2)	TH6P04T6V5CL			± 12	V
		TH6P04T25CL			± 35	

Notes : 1. V_{CL} mesured on outputs.

2. According to MIL STD 883C method 3015-2. C = 150 pF R = 150 Ω F = 10 Hz Exposure = 5 secs.

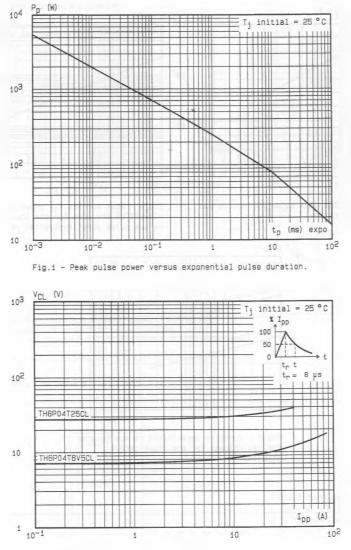
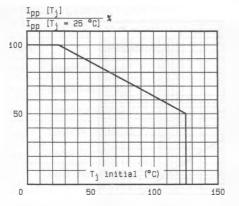



Fig.2 - Clamping voltage versus peak pulse current exponential waveform t = $20 \ \mu s$.

Note : The curves of the figure 2 are specified for a junction temperature of 25 °C before surge. The given results may be extrapolated for other junction temperatures by using the following formula : ΔV (BR) = $\alpha T (V (BR)) X [T_j - 25] X V (BR)$ For intermediate voltages, extrapolate the given results. D89TH8P04TP3

TH6P04T6V5CL/TH6P04T25CL

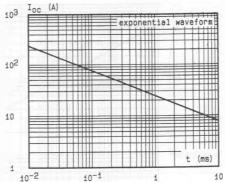
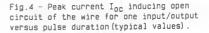



Fig.3 - Allowable peak pulse current versus junction temperature.

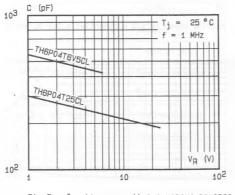
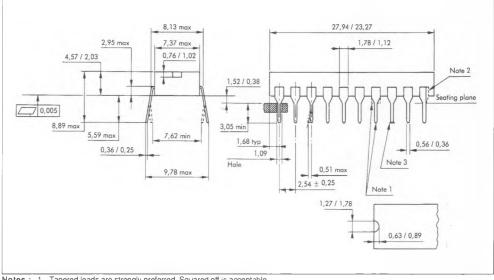


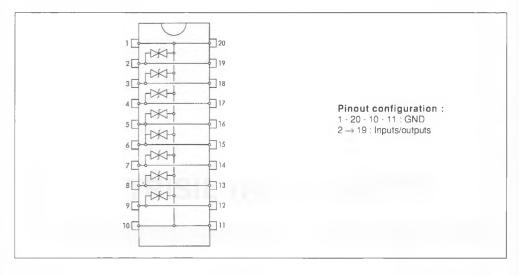
Fig.5 - Junction capacitance versus reverse applied voltage for one input/output (typical values).

D89TH6P04TP4


ORDER CODE

PACKAGE MECHANICAL DATA

DIP-20 Plastic



Notes: 1. Tapered leads are strongly preferred. Squared off is acceptable.

- 2. Half shoulders are acceptable on four end leads only.
 - 3. On blunt tips, allowable burr or spur is .003 in max on either sude of lead.

Packaging : Products supplied in antistatic tubes. Each tubes contains 18 products.

FUNCTIONNAL DIAGRAM

