

SYLVANIA TYPE 12DY8

MECHANICAL DATA	A
-----------------	---

Bulb	T-6½ Button 9-Pin
Outline	6-2 9JD
CathodeCoated Mounting Position	Unipotential Any

ELECTRICAL DATA

HEATER CHARACTERISTICS Heater Voltage Heater Current Maximum Heater Cathode Voltage	12.6 Volts 350 Ma 16 Volts
Maximum Heater-Cathode Voltage	

	Triode Section	Tetrode Section
Grid to Plate	1.5	$0.74 \mu \mu f$
<u>I</u> nput	2.0	11 uuf
Output	2.0	3.0 uuf

CHARACTERISTICS AND TYPICAL OPERATION

Grid No. 1 Voltage Grid No. 1 Resistor

Plate Load Resistor.....

MAXIMUM RATINGS (Design-Maximum Values) ²			
· · · ·	Triode Section	Tetrode Section	
Plate Voltage Grid No. 2 Voltage	16	16 Volts 16 Volts	
Grid No. 1 Resistance	10	10 Megohms	

Triode

Section

(Note 3)

5.0 Min.

10

Tetrode

Section

-6.0 Volts

0 Megohms 700 Ohms

3.0 Ma Max.

Plate Voltage	12.6	12.6 Volts
Grid No. 2 Voltage		12.6 Volts
Grid No. 1 Voltage	0	(Note 3) Volts
Grid No. 1 Resistor		2.2 Megohms
Plate Current	1.2	14 Ma
Grid No. 2 Current		2 Ma
Transconductance	2000	6000 umhos
Amplification Factor	20	, , , , , , , , , , , , , , , , , , ,
Plate Resistance (approx.)	10,000	5000 Ohms
Ec for Ib = $10 \mu Adc$ (approx.)	-2.0	Volts
Ec for 1b = $20 \mu Adc$ (approx.)		-9.0 Volts
, , , , ,		
TYPICAL OPERATION		
Tetrode Section—Relay Service		
Heater Voltage	10.0	15.0 Volts
Plate Supply Voltage	10.0	15.0 Volts
Grid No. 2 Voltage	10.0	15 0 Volts

Plate Current..... NOTES:

- This tube is intended to be used in automotive service from a nominal 12 volt battery source. The heater is therefore designed to operate over the 10.0 to 15.9 voltage range encountered in this service. The maximum ratings of the tube provide for an adequate safety factor such that the tube will withstand the wide variation in supply voltages.
- Design-Maximum Ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

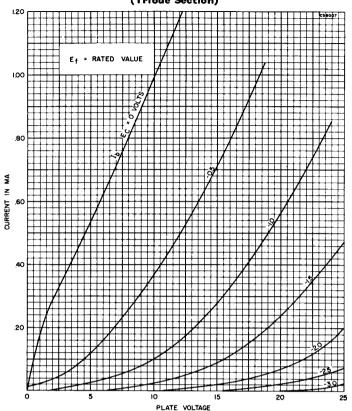
The device manufacturer chooses these values to provide acceptable service-ability of the device, taking responsibility for the effects of changes in operating

conditions due to variations in device characteristics.

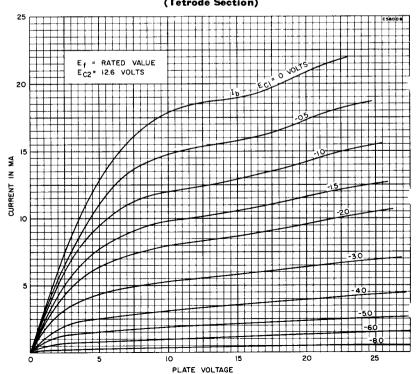
The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, and environmental conditions.

3. Contact potential bias developed across specified grid resistor.

APPLICATION


The Sylvania Type 12DY8 is a double section tube featuring a tetrode which is designed and controlled for relay service in "signal-seeker" applications; and a general purpose sharp-cutoff triode.

The 12DY8 is intended for operation where the heater, plate and screen voltages


are obtained directly from a 12-volt automotive electrical system.

SYLVANIA TYPE 12DY8 (Cont'd)

AVERAGE PLATE CHARACTERISTICS

AVERAGE PLATE CHARACTERISTICS (Tetrode Section)

SYLVANIA ELECTRONIC TUBES