

DUPLEX-DIODE TRIODE

FOR DETECTOR AND AF-DRIVER APPLICATIONS IN AUTOMOBILE RECEIVERS

DESCRIPTION AND RATING =

The 12FM6 is a miniature, duplex-diode triode for use as a combined detector, AVC rectifier, and transistor driver. The tube is specially designed to operate with its plate voltage supplied directly from a 12-volt storage battery.

GENERAL

ELECTRICAL

Cathode—Coated Unipotential	
Heater Voltage, AC or DC 12.6*	Volts
Heater Current	Amperes
Direct Interelectrode Capacitances†	
Triode Grid to Plate 1.7	μμ f
Triode Input	$\mu\mu f$
Triode Output	μμ f
Diode Plate to Diode Plate 1.1	μμf
MECHANICAL	

Mounting Position—Any
Envelope—T-5½, Glass
Base-E7-1, Miniature Button 7-Pin

MAXIMUM RATINGS

DESIGN-CENTER VALUES

Plate Voltage	Volts
DC Cathode Current	Milliamperes
Heater-Cathode Voltage	-
Heater Positive with Respect to Cathode	Volts
Heater Negative with Respect to Cathode	Volts
Grid Circuit Resistance	Megohms
Diode Current for Continuous Operation, Each Diode 1.0	Milliamperes

Design-Center ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the tube manufacturer to provide acceptable serviceability of the tube in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all tubes.

The equipment manufacturer should design so that initially no design-center value for the intended service is exceeded with a bogey tube in equipment operating at the stated normal supply-voltage.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no licbility for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

BASING DIAGRAM

TERMINAL CONNECTIONS]

- Pin 1-Triode Grid
- Pin 2—Cathode
- Pin 3—Heater
- Pin 4—Heater
- Pin 5-Diode Number 2 Plate
- Pin 6—Diode Number 1 Plate
- Pin 7—Triode Plate

PHYSICAL DIMENSIONS

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage	12.6	Volts
Grid Resistor		Megohms
Grid Voltage		Volts
Amplification Factor	10	
Plate Resistance, approximate	7700	Ohms
Transconductance	1300	Micromhos
Plate Current	1.0	Milliamperes
Average Diode Current, Each Diode		
With 10 Volts DC Applied	. 2.0	Milliamperes

- * When used in automobile service from a 12-volt source, under no circumstances should the heater voltage be less than 10.0 volts or more than 15.9 volts. These extreme variations in heater voltage may be tolerated for short periods; however, operation at or near these absolute limits in heater voltage necessarily involves sacrifice in performance at low heater voltage and in life expectancy at high heater voltage. Equipment reliability can be significantly increased with improved supply-voltage regulation.
- † Without external shield.

