

-PRODUCT INFORMATION -

Dissimilar Double Triode

Page 1 8-71

6GF7-A

FOR TV VERTICAL-DEFLECTION OSCILLATOR AND AMPLIFIER APPLICATIONS

COLOR TV TYPE

T-9 ENVELOPE

DISSIMILAR DOUBLE TRIODE

The 6GF7-A is a dissimilar double triode designed for use as a combined vertical-deflection oscillator and amplifier in television receivers. Section one, a high-mu triode, is intended for service as an oscillator; section two, a low-mu, high-perveance triode, for service as an amplifier.

The 6GF7-A utilizes a T-9 bulb and features a 9-pin glass button base with a 0.687-inch circle.

GENERAL

ELECTRICAL		MECHANICAL	
Cathode - Coated UnipotentialHeater Characteristics and RatingsHeater Voltage, AC or DC*Heater Current• $\dots \dots $	Volts Amperes pf pf pf	Operating Position - Any Envelope - T-9, Glass Base - E9-89, Button 9-Pin Outline Drawing - EIA 9-108 Maximum Diameter	Inches Inches Inches Inches Inches

MAXIMUM RATINGS

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

PHYSICAL DIMENSIONS

EIA 9-108

TERMINAL CONNECTIONS

- Pin 1 Cathode (Section 1)
- Pin 2 Grid (Section 2)
- Pin 3 Cathode (Section 2)
- Pin 4 Heater
- Pin 5 Heater
- Pin 6 Plate (Section 2)
- Pin 7 No Connection
- Pin 8 Plate (Section 1)
- Pin 9 Grid (Section 1)

MAXIMUM RATINGS (Cont'd)

DESIGN-MAXIMUM VALUES	Vertical Oscillator Service A (Section 1)	Vertical Deflection Amplifiers (Section 2)	
DC Plate Voltage		330	Volts
Peak Positive Pulse Plate Voltage		1500⊕	Volts
Peak Negative Grid Voltage		250	Volts
Plate Dissipation	1.5	110	Watts
DC Cathode Current		50	Milliamperes
Peak Cathode Current	77	175	Milliamperes
Heater-Cathode Voltage			
Heater Positive with Respect to Cathode			
DC Component	100	100	Volts
Total DC and Peak.	200	200	Volts
Heater Negative with Respect to Cathode Total DC and Peak	200	200	Volts
Grid Circuit Resistance	200	200	VUIG
With Cathode Bias	2.2	2.2	Megohms

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS	Section 1 (Oscillator)		ion 2 olifier)	
Plate Voltage	250	60	150	Volts
Grid Voltage	3.0	0§	-20	Volts
Amplification Factor	64		5.4	
Plate Resistance, approximate	40000		750	Ohms
Transconductance	1600		7200	Micromhos
Plate Current	1.4	95	50	Milliamperes
Plate Current, approximate E _C = -28 Volts Grid Voltage, approximate	·····		10	Milliamperes
Ib = 10 Microamperes Grid Voltage, approximate	5.5	-		Volts
Ib = 100 Microamperes	•••••		-45	Volts

NOTES

- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- Heater current of a bogey tube at Ef = 6.3 volts.
- Without external shield.
- ▲ For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations", Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.
- Value given is to be considered as an Absolute-Maximum Rating. In this case, the combined effect of supply voltage variation, manufacturing variation, including components in the equipment, and adjustment of equipment controls should not cause the rated value to be exceeded.
- In stages operating with grid-leak bias, an adequate cathodebias resistor or other suitable means is required to protect the tube in the absence of excitation.
- § Applied for short interval (two seconds maximum) so as not to damage tube.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

6GF7-A Page 3 8-71

K-55611-TD 222-2A

8-71

Owensboro, Kentucky 42301

