D10-160..

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced monoacceleratoroscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA			
Accelerator voltage	$v_{g_2,g_4,g_5(\ell)}$	1500	v
Display area	02.04.03.07	80 x 60	mm ²
Deflection coefficient, horizontal	M _x	32	V/cm
vertical	My	13.7	V/cm

SCREEN

·····	colour	persistence
D10-160GH	green	medium short
D10-160GM	ycllowish green	long
D10-160GP	bluish green	medium short

Useful screen diameter	min.	85	mm
Useful scan			
horizontal	min.	80	mm
vertical	min.	60	mm
The useful scan may be shifted vertically to a max. of 5 mm v geometric centre of the faceplate.	with respe	ect to) the

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	Vf	6.3	V
Heater current	I_{f}	300	mA

January	1969
---------	------

1

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections			
See also outline drawing			
Overall length	max.	260	mm
Face diameter	max.	102	mm
Base 14 pin all glass			
Net weight	approx.	400	g
Accessories			
Socket (supplied with tube)	type	5556	»6
Mu metal shield	type	5554	.7

D10-160..

CAPACITANCES

x_1 to all other elements except x_2	C _{x1(x2)}	4	pF
x_2 to all other elements except x_1	C _{x2(x1)}	4	pF
y_1 to all other elements except y_2	^C y1(y2)	3.5	pF
y_2 to all other elements except y_1	Cy _{2(y1})	3	pF
x_1 to x_2	C _{x1x2}	1.6	pF
y ₁ to y ₂	C _{y1y2}	1.1	$_{\rm pF}$
Control grid to all other elements	Cgl	5.5	pF
Cathode to all other elements	Ck	4	pF

FOCUSING electrostatic

DEFLECTION 3) double electrostatic

x plates symmetrical

y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90 + 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell} = 10 \mu A.1$)

Line width

l.w. 0.27 mm

¹) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:

 V_{y1} = V_{y2} = 1500 V; V_{x1} = 800 V; V_{x2} = 1200 V, thus directing the total beam current to x2.

Measure the current on x_2 and adjust V_{g1} for I_{x2} = 10 μA (being the beam current I_{ℓ}) c) set again for the conditions under a), without touching the V_{g1} control. Now a raster display with a true 10 μA screen current is achieved.

d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.

³) See page 4

a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μ A and adjust V_{g3} and V_{g2,g4,g5,l} for optimum spot quality at the centre of the screen.

b) under these conditions, but no raster, the deflection plate voltages should be changed to

TYPICAL OPERATING CONDITIONS³)

Accelerator voltage	$V_{g2,g4,g5,l}$	max. 15	500	V
Astigmatism control voltage	$\Delta V_{g2,g4,g5,\ell}$	±	30	V ¹)
Focusing electrode voltage	Vg3	140 to 2	275	V
Control grid voltage for visual extinction of focused spot	V _{g1}		-50 10	V V
Grid drive for $10 \ \mu A$ screen current		approx.		
Deflection coefficient, horizontal	M_X	max.		V/cm V/cm
vertical	My		3.7 4.5	V/cm V/cm
Deviation of linearity of deflection		max:	1	% ²)
Geometry distortion		see not	e 4	
Useful scan, horizontal		min.	80	mm
vertical		min.	60	mm
LIMITING VALUES (Absolute max. n	rating system)			
Accelerator voltage	$V_{g2,g4,g5,l}$		200 350	V V
Focusing electrode voltage	Vg3	max. 22	200	V
Control grid voltage, negative	-V _{g1}	max. 2 min.	200 0	V V
Cathode to heater voltage	V _{kf} -V _{kf}		125 125	V V
Grid drive, average	- 14	max.	20	V
Screen dissipation	Wl	max.	3	mW/cm

1) All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and centainly the mean y plate potential was made equal to $V_{g_2,g_4,g_5,\ell}$ with zero astigmatism correction.

²) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

³) The mean x and certainly the mean y plate potentials should be equal to $V_{g2,g4,g5,\ell}$ with astigmatism adjustment set to zero.

 4) A graticule, consisting of concentric rectangles of 50 mm x 60 mm and 49 mm x 58.6 mm is aligned with the electrical x-axis of the tube. The edges of a raster

will fall between these rectangles.

2