S.Q. TUBE

Special quality triode, designed for use as amplifier in measuring probes.

QUICK REFERENCE DATA					
Life test	1000 ho	ours			
Envelope	Submin	iature			
Low interface resistance					
Mechanical quality	Shock a	ınd vibrati	on res	istant	
Heating	Indirec A.C. o	t r D.C.; pa	arallel	supply	
Heater voltage	$v_{\mathbf{f}}$		6.3	v	
Heater current	${ m I_f}$		185	mA	
Equivalent grid noise voltage	v_n	max.	1	mV	
Anode current	I_a		14	mA	
Mutual conductance	S		14.5	mA/V	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Leads should not be soldered nearer than 5 mm to the seal. Leads should not be bent nearer than 2 mm to the seal. Method of shielding. See fig.1.

EC1000

CHARACTERISTICS

Column I Nominal value or setting of the tube

II Range values for equipment design: Initial spread

III Range values for equipment design: End of life

		l I	II	III	
Heater voltage	$v_{\rm f}$	6.3			V
Heater current	I_f	185	175 - 195		mA
Anode voltage	v _a	80			v
Grid voltage	$-V_g$	2			V
Anode current	Ia	14			mA
Mutual conductance	S	14.5			mA/V
Amplification factor	μ	27.5			
Input resistance	r_{g}	300			Ω
Frequency = 250 MHz	_				
Input resonance frequency	f	400	:		MHz
Anode supply voltage	Vba	82			V
Cathode resistor	R_k	143			Ω
Anode current	I_a	14.0	11.2-16.8	min. 8.2	mA
Mutual conductance	S	14.5			mA/V
Anode supply voltage	V _{ba}	90			V
Cathode resistor	R_k	680			Ω
Grid supply voltage	+ V _{bg}	7.5			V
Anode current	I _a	14			mA
Mutual conductance	S	14.5	12.9-16.1	min. 9.2	mA/V
Negative grid current	-Ig		max.0.01	max.0.01	μΑ
Leakage current between cathode and heater	I _{kf}		max. 5	max. 10	μΑ

Voltage between cathode and heater = 55 V. Cath. positive

CHARACTERISTICS (continued)

Equivalent grid microphony		I	II	
voltage	v_{g}		max.1.0	mV _{RMS}
Peak acceleration = 4 g				
Frequency = 50 Hz				
Equivalent grid hum voltage	v_g		max.1.0	mV _{RMS}
Grid resistor = 0.5 $M\Omega$	-		.	
Cathode resistor = 100 Ω				
Heater centre grounded				
CAPACITANCES				
Grid to cathode	C_{gk}	3.5	2.9-4.1	pF
Anode to grid	C_{ag}	1.7	1.4-2.0	pF
Grid to heater	c_{gf}	33	23 - 43	mpF
Anode to cathode	C_{ak}	450	325 - 575	mpF
Anode to heater	c_{af}	270	185 - 355	mpF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to assess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

Shock

The tube is subjected 5 times in each of 4 positions to an acceleration of 500~g supplied by an NRL shock machine with the hammer lifted over an angle of 30° .

Vibration

The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 50 Hz with an acceleration of 2.5 g.

LIFE

Production samples are tested to be within the end of life values during $1000 \, \mathrm{hours}$.

LIMITING VALUES (Absolute max. rating system)

Anode voltage	v_{a_0}	max.	275	V
	v_a	max.	110	V
Anode dissipation	W_a	max.	1.5	W
Grid voltage	$-V_g$	max.	55	V
Cathode current	I_k	max.	22	mA
Voltage between cathode and heater	$V_{\mathbf{kf}}$	max.	55	v
Bulb temperature	[‡] bulb	max.	170	$^{\rm o}{ m C}$

Grid resistor: The grid resistance should be restricted to a value such that no limiting values are exceeded at $-I_{\rm F}$ = 0.01 μA .

The D.C. feed back factor of the operating circuit may be taken into account.

The R_g value will also be limited by the required current stability and the permissible hum level.

Heater voltage: The average heater voltage should be 6.3 V.

Variations of the heater voltage exceeding the range of 6.0 V to 6.6 V will shorten the tube life.

EC1000

page	sheet	date
1	1	1968.12
2	2	1968.12
3	3	1968.12
4	4	1968.12
5	5	1968.12
6	6	1968.12
7	FP	2001.04.13