FRAME AND A.F. OUTPUT PENTODE

Pentode intended for use as frame output tube in television receivers and as A,F, power amplifier.

QUICK REFERENCE DATA				
Anode peak voltage	v _{ap}	max.	2	kV
Cathode current	Ik	max.	100	mA
Output power	w _o		5.3	W

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage Heater current

V _f	6.3	v
If	760	mA

Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES

Anode to all except grid No.1	$C_{a(g_1)}$		6.8	pF
Grid No.1 to all except anode	C _{g1(a)}		13	pF
Anode to grid No.1	C _{ag1}	max.	0.6	pF
Grid No.1 to heater	Cglt	max.	0.25	pF

OPTIMUM PEAK ANODE CURRENT IN FRAME OUTPUT OPERATION

The circuit should be designed so that the peak anode current does not exceed:

145 mA at $V_a = 60 V$, $V_{g_2} = 170 V$, $V_f = 6.3 V$ 190 mA at $V_a = 70 V$, $V_{g_2} = 200 V$, $V_f = 6.3 V$ 220 mA at $V_a = 80 V$, $V_{g_2} = 220 V$, $V_f = 6.3 V$

The minimum available value of the peak anode current at end of life and $V_f = 5.7 \text{ V}$ is:

125 mA at $V_a = 60$ V, $V_{g_2} = 170$ V 160 mA at $V_a = 70$ V, $V_{g_2} = 200$ V 185 mA at $V_a = 80$ V, $V_{g_2} = 220$ V

OPERATING CHARACTERISTICS

A.F. power amplifier, class A	(Measured with V _k c	ons	tant)		
Supply voltage	v _b		200		V
Grid No.2 series resistor (non decoupled)	R _{g2}		470		Ω
Cathode resistor	R _k		215		Ω
Load resistance	$R_{a} \sim$		2.5		kΩ
Grid No.1 driving voltage	v _i	0	0.52	7.0	V _{RMS}
Anode current	I_a	65	-	64	mA
Grid No.2 current	I_{g_2}	3.2	-	11.4	mA
Output power	Wo	0	0.05	5.3	W
Distortion	d _{tot}	-	-	10	%
A.F. power amplifier, class AB,	two tubes in push-pu	111			
Anode supply voltage	v_{ba}		250		v
Grid No.2 supply voltage	v_{bg_2}		200		v
Common cathode resistor	R _k		150		Ω
Load resistance	$R_{aa} \sim$		5.5		kΩ
Grid No.1 driving voltage	v _i	0	0.37	13.0	VRMS
Anode current	I _a 2	x50	-	2x55	mA
Grid No.2 current	Ig ₂ 2x	2.0	-	2x13	mA
Output power	wo	0	0.05	18.5	W
Distortion	d _{tot} -	-	·· -	4.5	%

OPERATING CHARACTERISTICS (continued)

A.F. power amplifier, single ended push-pull

I_b						
a) Single tone input signal						
Supply voltage	v_b		300		v	
Load resistance	$R_{a \sim}$	_	1		kΩ	
Grid No.1 driving voltage	v_i	0	0.41	5.4	V _{RMS}	
Supply current	Ib	66	-	64	mA	
Output power	Wo	0	0.05	4.5	W	
Distortion	d _{tot}	-	-	9.3	%	
b) Double tone input signal						
Supply voltage	v _b		300		v	
Load resistance	$R_{a_{\sim}}$		1		kΩ	
Grid No.1 driving voltage	v_i	0		2.7	V _{RMS} ¹)	
Supply current	Гb	66		64	mA	
Output power	w _o	0		5.5	w	
Distortion	d _{tot}	-		8.5	%	

1) Value of each tone separately.

REMARK

Single tone data are obtained with a pure sinusoidal input voltage. However such an input voltage is in general not representative for the reproduction of music and speech, since a purely sinusoidal tone seldom occurs.

The double tone data are obtained with two sinusoidal signals of different frequencies but of the same amplitude. This appears to be far better in agreement with practice. In the case of full drive with two sinusoidal signals different in frequency but having the same amplitude, the output power is half the value obtained at full drive with a single sinusoidal input voltage of twice this amplitude. To make comparison possible the obtained output power with double tone has therefore been multiplied by 2.

LIMITING VALUES (Design centre rating system)

Anode voltage	v _{ao}	max.	550	v
	va	max.	250	V
Anode peak voltage	v_{a_p}	max.	2	kV ¹)
Grid No.2 voltage	v _{g2o}	max.	550	v
	v _{g2}	max.	250	v
Anode dissipation	Wa	max.	12	W ²)
Grid No.2 dissipation:				
average	w_{g_2}	max.	1.75	W
peak	w _{g2p}	max.	6	W
Cathode current	I _k	max.	100	mA
Grid No.1 resistor:				
automatic bias	Rg1	max.	1	MΩ
frame output application				
with automatic bias	R_{g_1}	max.	2	MΩ
Cathode to heater voltage	v_{kf}	max.	200	v

Valid for application in frame output circuits where the max. pulse duration is 4% of a cyele with a max. of 0.8 ms.

²) For frame output application W_a = max. 10 W.

7

PHILIPS

Data handbook

Electronic components and materials

EL86

page	sheet	date
1	1	1969.01
2	2	1969.01
3	3	1969.01
4	4	1969.01
5	5	1969.01
6	6	1969.01
7	7	1969.01
8	8	1969.01
9	FP	1999.03.19