2N2218-2N2219

HIGH-SPEED SWITCHES

DESCRIPTION

The 2N2218, 2N2219, 2N2221 and 2N2222 are silicon planar epitaxial NPN transistors in Jedec TO-39 (for 2N2218 and 2N2219) and in Jedec TO-18 (for 2N2221 and 2N2222) metal cases. They are designed for high-speed switching applications at collector currents up to 500 mA , and feature useful current gain over a wide range of collector current, low leakage currents and low saturation voltages.

2N2218/2N2219 approved to CECC 50002100, 2N2221/2N2222 approved to CECC 50002-101 available on request.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CBO }}$	Collector-base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)	60	V
$\mathrm{V}_{\text {CEO }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	30	V
$V_{\text {EBO }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	5	V
I_{C}	Collector Current	0.8	A
$P_{\text {tot }}$	$\begin{aligned} & \text { Total Power Dissipation at } T_{\text {amb }} \leq 25^{\circ} \mathrm{C} \\ & \text { for } 2 \mathrm{~N} 2218 \text { and } 2 \mathrm{~N} 2219 \\ & \text { for } 2 \mathrm{~N} 2221 \text { and } 2 \mathrm{~N} 2222 \\ & \text { at } T_{\text {case }} \leq 25^{\circ} \mathrm{C} \\ & \text { for } 2 \mathrm{~N} 2218 \text { and } 2 \mathrm{~N} 2219 \\ & \text { for } 2 \mathrm{~N} 2221 \text { and } 2 \mathrm{~N} 2222 \end{aligned}$	$\begin{gathered} 0.8 \\ 0.5 \\ \\ 3 \\ 1.8 \end{gathered}$	W W W W
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
T	Junction Temperature	175	${ }^{\circ} \mathrm{C}$

THERMAL DATA

			$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N2219 } \end{aligned}$	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2222 } \end{aligned}$
$R_{\text {th j-case }}$ $\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{amb}}$	Thermal Resistance Junction-case Thermal Resistance Junction-ambient	Max Max	$\begin{gathered} 50^{\circ} \mathrm{C} / \mathrm{W} \\ 187.5^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{aligned} & 83.3^{\circ} \mathrm{C} / \mathrm{W} \\ & 300^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
I cbo	Collector Cutoff Current $\left(I_{E}=0\right)$	$\begin{aligned} & \mathrm{V}_{C B}=50 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=50 \mathrm{~V} \end{aligned}$	$T_{\mathrm{amb}}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {Ebo }}$	Emitter Cutoff Current $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	$V_{E B}=3 \mathrm{~V}$				10	nA
$V_{\text {(BR) } \mathrm{CBO}}$	Colllector-base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$		60			V
$\mathrm{V}_{\text {(BR)CEO }}{ }^{*}$	Collector-emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		30			V
$V_{\text {(BR) } \mathrm{EBO}}$	Emittter-base Breakdown Voltage ($I_{C}=0$)	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$		5			V
$V_{C E}$ (sat) ${ }^{*}$	Collector-emitter Saturation Voltage	$\begin{aligned} & I_{C}=150 \mathrm{~mA} \\ & I_{C}=500 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & I_{B}=15 \mathrm{~mA} \\ & I_{B}=50 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$V_{B E}$ (sat) ${ }^{*}$	Base-emitter Saturation Voltage	$\begin{aligned} & I_{C}=150 \mathrm{~mA} \\ & I_{C}=500 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & I_{B}=15 \mathrm{~mA} \\ & I_{B}=50 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 1.3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{h}_{\text {FE }}{ }^{*}$	DC Current Gain	$\begin{aligned} & \text { for } 2 \mathrm{~N} 2218 \\ & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \\ & \text { for } 2 \mathrm{~N} 2219 \\ & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { and } 2 \mathrm{~N} 2221 \\ & V_{C E}=10 \mathrm{~V} \\ & V_{C E}=1 \mathrm{~V} \\ & \text { and 2N2222 } \\ & V_{C E}=10 \mathrm{~V} \\ & V_{C E}=1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 20 \\ 25 \\ 35 \\ 40 \\ 20 \\ 20 \\ \\ 35 \\ 50 \\ 75 \\ 100 \\ 30 \\ 50 \end{gathered}$		120	
f_{T}	Transition Frequency	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}$	250			MHz
$\mathrm{C}_{\text {Cbo }}$	Collector-base Capacitance	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$			8	pF
$\mathrm{R}_{\text {e(hie) }}$	Real Part of Input Impedance	$\begin{aligned} & I_{\mathrm{c}}=20 \mathrm{~mA} \\ & \mathrm{f}=300 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}$			60	Ω

[^0]
[^0]: * Pulsed : pulse duration $=300 \mu$ s, duty cycle $=1 \%$.

