20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TYPES 2N342B AND 2N343B **N-P-N GROWN-JUNCTION SILICON TRANSISTORS**

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

1 watt at 25°C Case Temperature Guaranteed - 55°C, 25°C, 125°C Beta **Designed** for Audio and Servo Amplifier Stages

environmental tests

Each unit is heat cycled from -65° to $+175^{\circ}$ for ten cycles. A rigorous tumbling test subjects each unit to 12 mechanical shocks of up to 500 G's to ensure mechanical reliability. Each unit is thor-

oughly tested to determine the electrical characteristics. Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.

mechanical data

The transistor is in a JEDEC TO-11 hermetically sealed, welded package with glass-to-metal hermetic seal between case and leads. Approximate weight is 2.0 grams. The noninsulated mounting

clip (TI P/N 354001-99) is provided with each transistor. It is suitable for applications where thermal dissipation to a heat sink is desired. Material: beryllium copper, cadmium plated-gold iridited.

THE EMITTER IS IN ELECTRICAL CONTACT WITH THE CASE

maximum ratings at 25°C ambient temperature (unless otherwise noted)

•	2N342B	2N343B
Collector-Base Voltage	85v	65v
Collector-Emitter Voltage	85v	65v
Emitter-Base Voltage	2v	2v
Total device dissipation at case temperature 25°C (see note 1)	1000 mw	
Total device dissipation at 25°C ambient (see note 2)	750 mw	
Storage Temperature Range	- 65°C to 150°C	

Note 1: Derate linearly to 150°C case temperature at the rate of 8.0 mw/°C.

Note 2: Derate linearly to 150°C ambient temperature at the rate of 6.0 mw/°C.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders

TYPES 2N342B AND 2N343B N-P-N GROWN-JUNCTION SILICON TRANSISTORS

electrical characteristics	at 25°C ambien	t temperature (unles	s otherwise noted)

PARAMETER	TEST CONDITION		2N342B MIN MAX		2N3438 MIN MAX		UNIT
1 _{CBO} Collector Reverse Current	Y _{C8} == 30v	I _E == 0		1		1	μ
ICBO Collector Reverse Current	$\begin{array}{c} \mathbf{V}_{CB} \equiv 30\mathbf{v} \\ \mathbf{T}_{A} \equiv 150^{\circ} \end{array}$			50		50	μ
ICBO Collector Reverse Current	V _{CB} == 65v	I _E = 0				50	μα
ICBO Collector Reverse Current	V _{CB} = 85v	1 _E = 0		50			μα
ICEO Collector Reverse Current	V _{CE} == 65v	I _B == 0				100	μ
ICED Collector Reverse Current	V _{CE} = 85v	! ₈ = 0		109	·		ha.
IERO Emitter Reverse Current	V _{E8} = 2v	l _c = 0		100		100	μ
	$\frac{V_{CE} = 10v}{T_A = -55^{\circ}C}$	i _g ==5 me f == 1 kc	7	32	24	90	
h _{fo} A-C Common-Emilior Forward Current Transfer	$V_{CE} = 10v$ $T_A = 25^{\circ}C$	$f_{\rm E} = -5$ me $f_{\rm E} = 1$ kc	9	32	28	70	
Ratie		1 _E == -5 me f == 1 kc	9	32	28	70	
h _{fe} A-C Common-Emitter Forward Current Transfer Ratio	¥ _{CE} = 5v	$l_{\rm E} = -1$ mm f = 1 kc	7	32	20	90	
h _{ie} A-C Common-Emitter Input Resistance	V _{CE} = 10v	$I_{E} = -5$ me f = 1 kc		500		1000	ohi
h _{ib} A-C Common-Bese Input Resistance	V _{CB} = 10v	$l_g = -5$ me f = 1 kc		30		30	ohi
h _{rb} A-C Common-Base Reverse Voltage Transfer Ratio	V _{C8} = 10v	$l_g \simeq -5 m s$ f $\simeq 1 k c$		300		300	ohi
h _{ab} A-C Common-Base Output Admittance	V _{C8} = 10v	$l_{\rm E} =5$ me f = 1 kc		2		2	щ
Cob Common Base Output Capacitance	V _{CB} = 10v	$l_{\rm E} = 0$ f = 1 kc		20	ĸ	20	14
R _{et} Saturation Resistance	I _C = 20 me	l _a = 3 ma		208		200	oha