New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

2N3441

NPN SILICON POWER TRANSISTOR

... 2N3441 transistor is designed for use in general-purpose switching and linear amplifier applications requiring high breakdown voltages. It is characterized for use as:

- Driver for High Power Outputs
- Series and Shunt Regulators
- Audio and Servo Amplifiers
- Solenoid and Relay Drivers
- Power Switching Circuits

3 AMPERES

NPN SILICON
POWER TRANSISTOR

140 VOLTS 25 WATTS

MAXIMUM RATINGS		-	
Asting	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	140	Vdc
Collector-Base Voltage	VÇBO_	160	Vdc
Emitter-Base Voltage	VEBO	7	Vdc Adc Adc
Callector Current — Continuous	¹c	3	
Base Current — Continuous	le .	2	
Total Power Dissipation © T _C = 25°C Derate above 25°C	Po	25 0.142	Watts W/OC
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°c
THERMAL CHARACTERISTICS		l	
Characteristic	Symbol	Max	Unit

Temperature Range					
THERMAL CHARACTERISTICS					
Characteristic	Symbol	Mex	Unit		
Thermal Resistance, Junction to Case	₽eJC	7	°C/W		
	-				

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Sami-Canductor

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Mex	Uni
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (1) (I _C = 100 mAde, I _B = 0)	VCEO(sus)	140	-	Vdd
Collector Cutoff Current (VCE = 140 Ade, Ig = 0)	CEO		100	mA
Collector Cutoff Current (VCE = 140 Vdc, VBE(off) = 1.5 V) (VCE = 140 Vdc, VBE(off) = 1.5 V @ 150°C)	ICEX	-	5.0 6.0	mA
Emitter Cutoff Current (VBE = 7.0 Vdc, IC = 0)	!EBO	-	1.0	mA
ON CHARACTERISTICS				
DC Current Gain (1) (IC = 0.5 Adc, V _{CE} = 4.0 V) (IC = 2.7 Adc, V _{CE} = 4.0 V)	pleE	25 5.0	100	-
Collector-Emitter Saturation Voltage (1) (IC = 2.7 Adc, Ig = 0.9 Adc)	VCE(sat)	-	6.0	Vdc
Base-Ernitter On Voltage (1) (I _C = 2.7 Ade, V _{CE} = 4.0 Vde)	VBE(on)		6.7	Vdc
DYNAMIC CHARACTERISTICS				
Smell-Signal Current Gain (IC = 0.5 Adc, VCE = 4.0 Vdc, ftest = 1 kHz)	hfe	15	75	
Small-Signal Current Gain (IC = 0.5 Adc, VCE = 4.0 Vdc, frest = 0.4 MHz)	(hfei	5.0	-	-

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

There are two limitations on the power-handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)}$ = $200^{\circ}C$: T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.