New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

2N3868

Silicon PNP Power

Transistors

APPLICATIONS:

- High-Speed Switching
- Medium-Current Switching
- High-Frequency Amplifiers

FEATURES:

- Collector-Emitter Sustaining Voltage: V_{CEO(sus)} = 60 Vdc (Min)
- DC Current Gain: h_{FE} = 30-150 @ I_C = 1.5 Adc
- Low Collector-Emitter Saturation Voltage:
 V_{CE(sat)} = 0.75 Vdc @ I_C = 1.5 Adc
- High Current-Gain Bandwidth Product: f_T = 90 MHz (Typ)

DESCRIPTION:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM BATINGS:

SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CEO} *	Collector-Emitter Voltage	- 60	Vdc
V _{CB} *	Collector-Base Voltage	- 60	Vdc
V _{EB} *	Emitter-Base Voltage	- 4.0	Vdc
lc*	Peak Collector Current	10	Adc
lc*	Continuous Collector Current	3.0	Adc
le*	Base Current	0.5	Adc
T _{STG} *	Storage Temperature	-65 to 200	°C
TJ*	Operating Junction Temperature	-65 to 200	۰C
P _D *	Total Device Dissipation	6.0	Watts
	T _C = 25°C		
	Derate above 25°C	34.3	mW/°C
P _D *	Total Device Dissipation	1.0	Watts
	T _A = 25°C		
	Derate above 25°C	5.71	m₩/ºC
θJC	Thermal Resistance		
	Junction to Case	29	∘C/W
	Junction to Ambient	175	°C/W

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS:

(25°Case Temperature Unless Otherwise Noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VALUE		Units
		TEST CONDITIONS		Max.	
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	$I_C = 20 \text{ mAdc}, I_B = 0 \text{ (Note 1)}$	- 60		Vdc
BV _{CBO} *	Collector-Base Breakdown Voltage	l _C = 100 μAdc, l _E = 0	- 60		Vdc
BV _{EBO} *	Emitter-Base Breakdown Voltage	ا _E = 100 µAdc, I _C = 0	- 4.0		Vdc
ICEX*	Collector Cutoff Current	V _{CE} = - 60V, V _{BE(off)} = 2.0 Vdc		1.0	μAdc
Ісво*	Collector Cutoff Current	V _{CB} = - 60V, I _E = 0, T _C = 150°C		150	μAdc
hFE*	DC Current Gain (Note 1)	Ic = 500 mAdc, V _{CE} = - 1.0 Vdc	35		
		I _C = 1.5 Adc, V _{CE} = - 2.0 Vdc	30	150	
		I _C = 2.5 Adc, V _{CE} = - 3.0 Vdc	20		
		I _C = 3.0 Adc, V _{CE} = - 5.0 Vdc	20		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	$I_{\rm C}$ = 500 mAdc, $I_{\rm B}$ = 50 mAdc		- 0.5	Vdc
		I _C = 1.5 Adc, I _B = 150 mAdc		- 0.75	Vdc
		I _C = 2.5 Adc, I _B = 250 mAdc		- 1.3	Vdc
V _{BE(sat)} *	Base-Emitter Saturation Voltage (Note 1)	I _C = 500 mAdc, I _B = 50 mAdc		- 1.0	Vdc
		I _C = 1.5 Adc, I _B = 150 mAdc	- 0.9	- 1.4	Vdc
		I _C = 2.5 Adc, I _B = 250 mAdc		- 2.0	Vdc
f _T *	Current Gain Bandwidth Product (Note 2)	I_C = 100 mAdc, V_{CE} = - 5.0 Vdc, f_{test} = 20 MHz	60		MHz
C _{ob} *	Output Capacitance	$V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz}$		120	pF
C _{ib} *	Input Capacitance	V _{EB} = - 3.0 Vdc, I _C = 0, f = 0.1 MHz		1000	рF
td*	Delay Time	$V_{CC} = -30 \text{ Vdc}, V_{BE(off)} = 0, I_C = 1.5 \text{ Adc},$ $I_{B1} = 150 \text{ mAdc}$		35	ns
tr*	Rise Time	$V_{CC} = -30 \text{ Vdc}, V_{BE(off)} = 0, I_C = 1.5 \text{ Adc},$ $I_{B1} = 150 \text{ mAdc}$		65	ns
ts*	Storage Time	$V_{CC} = -30$ Vdc, IC = 1.5 Adc, $I_{B1} = I_{B2} = 150$ mAdc		325	ns
tf*	Fall Time	V _{CC} = - 30 Vdc, IC = 1.5 Adc, I _{B1} = I _{B2} =150 mAdc		75	ns

