New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

2N6667, 2N6668

Darlington Silicon Power Transistors

Designed for general-purpose amplifier and low speed switching applications.

- High DC Current Gain h_{FE} = 3500 (Typ) @ I_C = 4.0 Adc
- Collector-Emitter Sustaining Voltage @ 200 mAdc
 V_{CEO(sus)} = 60 Vdc (Min) 2N6667
 = 80 Vdc (Min) 2N6668
- Low Collector-Emitter Saturation Voltage V_{CE(sat)} = 2.0 Vdc (Max)@ I_C = 5.0 Adc
- Monolithic Construction with Built-In Base-Emitter Shunt Resistors

COLLECTOR

- TO-220AB Compact Package
- Complementary to 2N6387, 2N6388
- Pb-Free Packages are Available*

PNP SILICON DARLINGTON POWER TRANSISTORS 10 A, 60–80 V, 65 W

Figure 1. Darlington Schematic

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

2N6667, 2N6668

MAXIMUM RATINGS (Note 1)

Rating	Symbol	2N6667	2N6668	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	Vdc
Collector-Base Voltage	V _{CB}	60	80	Vdc
Emitter-Base Voltage	V _{EB}	5.0		Vdc
Collector Current – Continuous – Peak	łc	10 15		Adc
Base Current	1 _B	250		mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	65 0.52		W W/°C
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	2.0 0.016		W W/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 te	-65 to + 150	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{0JC}	1.92	°C/W
Thermal Resistance, Junction to Ambient	R _{0JA}	62.5	°C/W

ELECTRICAL CHARACTERISTICS (Note 1) (T_C = 25°C unless otherwise noted)

Characteristic		Min	Max	Unit
Collector-Emitter Sustaining Voltage (Note 2) 2N66 (I _C = 200 mAdc, I _B = 0) 2N66	020(303)	60 80	-	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0) 2N66 (V _{CE} = 80 Vdc, I _B = 0) 2N66	010		1.0 1.0	mAdo
Collector Cutoff Current 2N66 $(V_{CE} = 60 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc})$ 2N66 $(V_{CE} = 80 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc})$ 2N66 $(V_{CE} = 60 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, T_C = 125^{\circ}C)$ 2N66 $(V_{CE} = 80 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, T_C = 125^{\circ}C)$ 2N66 $(V_{CE} = 80 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, T_C = 125^{\circ}C)$ 2N66	668 667		300 300 3.0 3.0	μAdc mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	5.0	mAdo
ON CHARACTERISTICS (Note 1)				
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 3.0 Vdc) (I _C = 10 Adc, V _{CE} = 3.0 Vdc)	h _{FE}	1000 100	20000	-
Collector-Emitter Saturation Voltage ($I_{C} = 5.0$ Adc, $I_{B} = 0.01$ Adc) ($I_{C} = 10$ Adc, $I_{B} = 0.1$ Adc)	V _{CE(sat)}	-	2.0 3.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 5.0$ Adc, $I_B = 0.01$ Adc) ($I_C = 10$ Adc, $I_B = 0.1$ Adc)	V _{BE(sat)}		2.8 4.5	Vdc
Current Gain – Bandwidth Product ($I_C = 1.0$ Adc, $V_{CE} = 5.0$ Vdc, $f_{test} = 1.0$ MHz)	h _{fe}	20	-	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	-	200	pF
	b.	1000		

Current Gain – Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc, f _{test} = 1.0 MHz)	h _{fe}	20	-	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	Cob	-	200	pF
Small-Signal Current Gain (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{fe}	1000		

Indicates JEDEC Registered Data.
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.