TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE ( $\pi$ -MOS $\Psi$ )

# 2 S K 3 1 2 7

CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE APPLICATIONS

- Low Drain-Source ON Resistance :  $R_{DS(ON)} = 9.5 \text{ m}\Omega$  (Typ.)
- High Forward Transfer Admittance :  $|Y_{fS}| = 38 \text{ S} (Typ.)$
- Low Leakage Current :  $I_{DSS} = 100 \ \mu A$  (Max.) ( $V_{DS} = 30 \ V$ )
- Enhancement-Mode :  $V_{th} = 1.5 \sim 3.0 \text{ V} (V_{DS} = 10 \text{ V}, \text{ I}_D = 1 \text{ mA})$

#### MAXIMUM RATINGS (Ta = 25°C)

| CHARACTE             | SYMBOL           | RATING          | UNIT |   |
|----------------------|------------------|-----------------|------|---|
| Drain-Source Voltage | VDSS             | 30              | V    |   |
| Drain-Gate Voltage ( | VDGR             | 30              | V    |   |
| Gate-Source Voltage  | V <sub>GSS</sub> | $\pm 20$        | V    |   |
| Drain Current        | DC (Note 1)      | ID              | 45   | А |
|                      | Pulse (Note 1)   | I <sub>DP</sub> | 135  | A |
| Drain Power Dissipat | PD               | 65              | W    |   |
| Single Pulse Avalanc | E <sub>AS</sub>  | 524             | mJ   |   |
| Avalanche Current    | I <sub>AR</sub>  | 45              | A    |   |
| Repetitive Avalanche | EAR              | 6               | mJ   |   |
| Channel Temperature  | T <sub>ch</sub>  | 150             | °C   |   |
| Storage Temperature  | $T_{stg}$        | $-55 \sim 150$  | °C   |   |





#### Weight : 1.5 g (Typ.)

## THERMAL CHARACTERISTICS

| CHARACTERISTIC                         | SYMBOL                 | MAX. | UNIT |
|----------------------------------------|------------------------|------|------|
| Thermal Resistance, Channel to Case    | $R_{th(ch-c)}$         | 1.92 | °C/W |
| Thermal Resistance, Channel to Ambient | R <sub>th (ch-a)</sub> | 83.3 | °C/W |

- (Note 1) : Please use devices on condition that the channel temperature is below 150°C.
- (Note 2) :  $V_{DD} = 25 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$  (initial),  $L = 186 \ \mu\text{H}, R_{G} = 25 \ \Omega, I_{AR} = 45 \text{ A}$
- (Note 3) : Repetitive rating ; Pulse Width Limited by maximum junction temperature.

This transistor is an electrostatic sensitive device. Please handle with caution.

| CHARA                                               | CTERISTIC          | SYMBOL                             | TEST CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN. | TYP. | MAX. | UNIT      |  |  |
|-----------------------------------------------------|--------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-----------|--|--|
| Gate Leakage                                        | e Current          | IGSS                               | $V_{GS} = \pm 16 V, V_{DS} = 0 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _    |      | ±10  | μA        |  |  |
| Drain Cut-of                                        | f Current          | IDSS                               | $V_{DS} = 30 V, V_{GS} = 0 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      | 100  | μA        |  |  |
| Drain-Source<br>Voltage                             | Breakdown          | V (BR) DSS                         | $\mathrm{I_{D}=10mA,~V_{GS}=0V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30   | _    | -    | v         |  |  |
| Gate Thresho                                        | old Voltage        | V <sub>th</sub>                    | $V_{DS} = 10 V, I_{D} = 1 mA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5  | —    | 3.0  | V         |  |  |
| Drain-Source                                        | ON Resistance      | R <sub>DS</sub> (ON)               | $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 25 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _    | 9.5  | 12   | $m\Omega$ |  |  |
| Forward Tran<br>Admittance                          | nsfer              | Y <sub>fs</sub>                    | $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 25 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19   | 40   | _    | S         |  |  |
| Input Capacitance                                   |                    | C <sub>iss</sub>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 2300 | —    |           |  |  |
| Reverse Transfer<br>Capacitance                     |                    | C <sub>rss</sub>                   | $ \begin{bmatrix} V_{\text{DS}} = 10 \text{ V}, V_{\text{GS}} = 0 \text{ V}, \\ f = 1 \text{ MHz} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 380  | _    | pF        |  |  |
| Output Capa                                         | Output Capacitance |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | 1100 | —    |           |  |  |
| Switching<br>Time                                   | Rise Time          | C <sub>oss</sub><br>t <sub>r</sub> | $V_{GS} \stackrel{10 \text{ V}}{_{0 \text{ V}}} \prod_{\substack{0 \text{ V} \\ 0 \text{ V}}} \stackrel{\mathbf{I}_{D} = 25 \text{ A}}{_{0 \text{ V}}} V_{OUT}$ $V_{OUT} \stackrel{0 \text{ V}}{_{0 \text{ V}}} \stackrel{0 \text{ V}} \stackrel{0 \text{ V}}} \stackrel{0 \text{ V}} \stackrel{0 \text{ V}} \stackrel{0 \text{ V}}$ |      | 12   | _    |           |  |  |
|                                                     | Turn-on Time       | ton                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 25   | _    | ns        |  |  |
|                                                     | Fall Time          | tf                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 75   | _    |           |  |  |
|                                                     | Turn-off Time      | toff                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 200  | _    |           |  |  |
| Total Gate Charge (Gate-<br>Source Plus Gate-Drain) |                    | $\mathbf{Q}_{\mathbf{g}}$          | $V_{DD} \rightleftharpoons 24 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _    | 66   | _    |           |  |  |
| Gate-Source Charge                                  |                    | $Q_{\rm gs}$                       | $I_D = 45 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 45   |      | nC        |  |  |
| Gate-Drain ("Miller") Charge                        |                    | Q <sub>gd</sub>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | 21   | _    |           |  |  |

### ELECTRICAL CHARACTERISTICS (Ta = 25°C)

#### SOURCE-DRAIN RATINGS AND CHARACTERISTICS (Ta = 25°C)

| CHARACTERISTIC                               | SYMBOL           | TEST CONDITION                                                        | MIN. | TYP. | MAX. | UNIT |
|----------------------------------------------|------------------|-----------------------------------------------------------------------|------|------|------|------|
| Continuous Drain Reverse<br>Current (Note 1) | I <sub>DR</sub>  | —                                                                     | _    | _    | 45   | Α    |
| Pulse Drain Reverse Current<br>(Note 1)      | I <sub>DRP</sub> | -                                                                     | -    | _    | 135  | Α    |
| Forward Voltage (Diode)                      | VDSF             | $I_{DR} = 45 \text{ A}, V_{GS} = 0 \text{ V}$                         |      | _    | -1.7 | V    |
| Reverse Recovery Time                        |                  | $I_{DR} = 45 \text{ A}, V_{GS} = 0 \text{ V}$                         |      | 150  |      | ns   |
| Reverse Recovery Charge                      | $Q_{rr}$         | $\mathrm{dI}_{\mathrm{DR}}$ / $\mathrm{dt}$ = 50 A / $\mu \mathrm{s}$ | _    | 270  | _    | nC   |

MARKING



## **RESTRICTIONS ON PRODUCT USE**

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.