New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.

SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

MAXIMUM RATINGS

Rating -	Symbol	Value	Unit	
Drain-Source Voltage	VDS	25	Vdc	
Drain-Gate Voltage	VDG1 VDG2	30 30	Vdc	
Drein Current	ID	50	mAdc	
Gate Current	lG1 lG2			
Total Davice Dissipation @ TA = 25°C Derate above 25°C	PD	360 2.4	m₩ m₩/°C	
Total Device Dissipation @ T _C = 25°C Derete above 25°C	PD	1.2 8.0	Watt mW/°C	
Lead Temperature	ТL	300	°C	
Junction Temperature Range	Τj	-65 to +175	°C	
Storage Channel Temperature Range	T _{stg}	-65 to +175	°C	

Refer to MPF201 for additional graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage (ID = 10 μ Adc, VS = 0, VG1S = VG2S = -5.0 Vdc)	-	V(BR)DSX	25	-	_	Vdc
Gate 1-Source Breakdown Voltage(1) ($I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0$)		V(BR)G1\$O	± 8.0	± 12	± 30	Vdc
Gate 2-Source Breakdown Voltage(1) (IG2 = ±10 mAdc, VG1S = VDS = 0)		V(BR)G2SO	± 6.0	±12	±30	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 Vdc, V_{G2S} = V_{DS} = 0)$ $(V_{G1S} = -5.0 Vdc, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}C)$		¹ G1SS	_	±,040	± 10 - 10	nAdc μAdc
Gate 2 Leakage Current (VG2S = ±5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C)		^I G2 S \$		±.050	± 10 10	nAdc μAdc
Gate 1 to Source Cutoff Voltage (VDS = 16 Vdc, VG2S = 4.0 Vdc, I_D = 20 μ Adc)		VG1S(off)	-0.5	- 1.5	- 5.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 Vdc, VG1S = 0, ID = 20 μAdc)		VG2S(off)	0.2	-1.4	5.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current(2) (VDS = 15 Vdc, VG1S = 0, VG2S = 4.0 Vdc)	3N201,3N202 3N203	IDSS	6.0 3.0	13 11	30 15	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance(3) (VDS = 15 Vdc, VG2S = 4.0 Vdc, VG1S = 0, f = 1.0 kHz)	3N201,3N202 3N203	Y _{fs}	8.0 7.0	12.8 12.5	20 15	mmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = I_{DSS}, f = 1.0 \text{ MHz})$		Ciss	_	3.3	-	pF
Reverse Transfer Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 10 mAdc, f = 1.0 M	Hz)	C _{rss}	0.005	0.014	0.03	pF
Output Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, $i_D = I_{DSS}$, $f = 1.0$ MHz)		C _{OSS}	-	1.7	-	pf
FUNCTIONAL CHARACTERISTICS						
Noise Figure (Vpp = 18 Vdc, Vgg = 7.0 Vdc, f ≈ 200 MHz) (Figure 1) (Vpp = 18 Vdc, Vgg = 6.0 Vdc, f = 45 MHz) (Figure 3)	3N201 3N203	NF	-	1.8 5.3	4.5 6.0	dB

N J S

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

3N201, 3N202, 3N203

	ELECTRICAL	L CHARACTERISTICS (continued) (TA = 25°C unless otherwise no	(hetr
--	------------	--	--------

Characteristic		Symbol	Min	Тур	Мах	Unit
Common Source Power Gain		Gps				dB
{V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz} (Figure 1)	3N201	1	15	20	25	
(V _{DD} = 18 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (Figure 3)	3N203		20	25	30	
(VDD = 18 Vdc, fLO = 245 MHz, fRF = 200 MHz) (Figure 2)	3N202	G _C (5)	15	19	25	
Bandwidth	-	BW				MHz
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1)	3N201		Б.О		9.0	
(VDD = 18 Vdc, fLO = 245 MHz, fBF = 200 MHz) (Figure 2)	3N202	1	4.5	-	7.5	
(V _{DD} = 18 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (Figure 3)	3N203		3.0	-	6.0	
Gain Control Gate-Supply Voltage(4)		VGG(GC)			_	Vdc
(V _{DD} = 18 Vdc, ΔG _{DS} = -30 dB, f = 200 MHz) (Figure 1)	3N201	1	0	-1.0	-3.0	
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz})$ (Figure 3)	3N203		0	-0.6	-3.0	

(1) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly. (2) Pulse Test; Pulse Width \approx 300 μ s, Duty Cycle \leq 2.0%. (3) This parameter must be measured with blas voltages applied for less than 5 seconds to avoid overheating. (4) ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG} = 7.0$ volts (3N201) and $V_{GG} = 6.0$ volts (3N203). (5) Power Gain Conversion

