BD676G, BD676AG, BD678G, BD678AG, BD680G, BD680AG, BD682G, BD682TG

Plastic Medium-Power Silicon PNP Darlingtons

This series of plastic, medium-power silicon PNP Darlington transistors can be used as output devices in complementary general-purpose amplifier applications.

Features

- High DC Current Gain
- Monolithic Construction
- BD676, 676A, 678, 678A, 680, 680A, 682 are complementary with BD675, 675A, 677, 677A, 679, 679A, 681
- BD678, 678A, 680, 680A are equivalent to MJE 700, 701, 702, 703
- These Devices are Pb-Free and are RoHS Compliant*

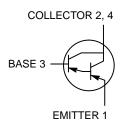
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BD676G, BD676AG BD678G, BD678AG BD680G, BD680AG BD682G, BD682TG	V _{CEO}	45 60 80 100	Vdc
Collector-Base Voltage BD676G, BD676AG BD678G, BD678AG BD680G, BD680AG BD682G, BD682TG	V _{CB}	45 60 80 100	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current	Ic	4.0	Adc
Base Current	Ι _Β	0.1	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 0.32	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.13	°C/W


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

4.0 AMP DARLINGTON POWER TRANSISTORS PNP SILICON 45, 60, 80, 100 VOLT, 40 WATT

MARKING DIAGRAMS

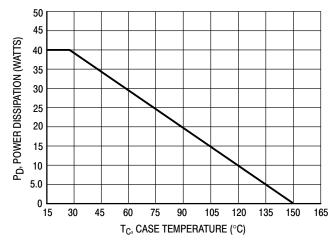
Y = Year WW = Work Week BD6xx = Device Code

xx = 76, 78, 80, 82, or 82T

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.


BD676G, BD676AG, BD678G, BD678AG, BD680G, BD680AG, BD682G, BD682TG

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1		1	
Collector–Emitter Breakdown Voltage (Note 1) (I _C = 50 mAdc, I _B = 0) BD676G, BD676AG BD678G, BD678AG BD680G, BD680AG BD682G, BD682TG	BV _{CEO}	45 60 80 100	- - - -	Vdc
Collector Cutoff Current $(V_{CE} = Half Rated V_{CEO}, I_B = 0)$	ICEO	-	500	μAdc
Collector Cutoff Current $(V_{CB} = Rated BV_{CEO}, I_E = 0)$ $(V_{CB} = Rated BV_{CEO}. I_E = 0, T_C = 100^{\circ}C)$	I _{CBO}	- -	0.2 2.0	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS				
DC Current Gain (Note 1) $ \begin{array}{l} (I_C = 1.5 \; \text{Adc, V}_{\text{CE}} = 3.0 \; \text{Vdc}) \\ \text{BD676G, BD678G, BD680G, BD682G} \\ (I_C = 2.0 \; \text{Adc, V}_{\text{CE}} = 3.0 \; \text{Vdc}) \\ \text{BD676AG, BD678AG, BD680AG} \end{array} $	h _{FE}	750 750	-	-
Collector–Emitter Saturation Voltage (Note 1) ($I_C = 1.5$ Adc, $I_B = 30$ mAdc) BD678G, BD680G, BD682G ($I_C = 2.0$ Adc, $I_B = 40$ mAdc) BD676AG, BD678AG, BD680AG	V _{CE(sat)}	-	2.5 2.8	Vdc
Base–Emitter On Voltage (Note 1)	V _{BE(on)}	-	2.5 2.5	Vdc
DYNAMIC CHARACTERISTICS			•	•
Small–Signal Current Gain (I _C = 1.5 Adc, V _{CE} = 3.0 Vdc, f = 1.0 MHz)	h _{fe}	1.0	_	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

Figure 1. Power Temperature Derating

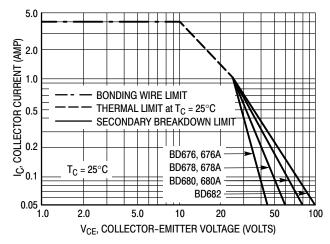
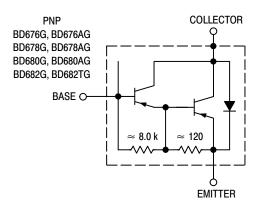


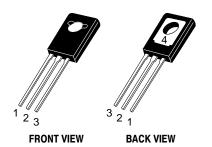
Figure 2. DC Safe Operating Area

BD676G, BD676AG, BD678G, BD678AG, BD680G, BD680AG, BD682G, BD682TG

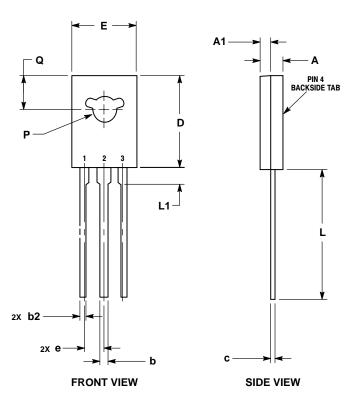
There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.




Figure 3. Darlington Circuit Schematic

ORDERING INFORMATION


Device	Package	Shipping
BD676G	TO-225 (Pb-Free)	500 Units / Box
BD676AG	TO-225 (Pb-Free)	500 Units / Box
BD678G	TO-225 (Pb-Free)	500 Units / Box
BD678AG	TO-225 (Pb-Free)	500 Units / Box
BD680G	TO-225 (Pb-Free)	500 Units / Box
BD680AG	TO-225 (Pb-Free)	500 Units / Box
BD682G	TO-225 (Pb-Free)	500 Units / Box
BD682TG	TO-225 (Pb-Free)	50 Units / Rail

BD676G, BD676AG, BD678G, BD678AG, BD680G, BD680AG, BD682G, BD682TG

PACKAGE DIMENSIONS

TO-225 CASE 77-09 **ISSUE AC**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS	
DIM	MIN	MAX
Α	2.40	3.00
A1	1.00	1.50
b	0.60	0.90
b2	0.51	0.88
С	0.39	0.63
D	10.60	11.10
Е	7.40	7.80
е	2.04	2.54
L	14.50	16.63
L1	1.27	2.54
Р	2.90	3.30
Q	3.80	4.20

PIN 1 FMITTER COLLECTOR 2., 4.

ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking,pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary indifferent applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative