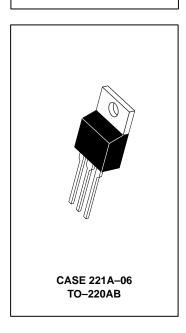
Plastic High Power Silicon NPN Transistor

 \dots designed for use up to 30 Watt audio amplifiers utilizing complementary or quasi complementary circuits.

- DC Current Gain hFE = 40 (Min) @ IC = 1.0 Adc
- BD801 is complementary with BD 798, 800, 802

MAXIMUM RATINGS

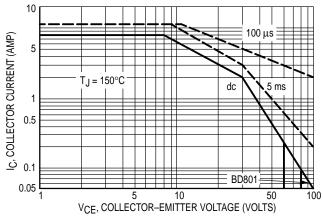

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	100	Vdc
Collector–Base Voltage	VCBO	100	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current	IC	8.0	Adc
Base Current	ΙΒ	3.0	Adc
Total Device Dissipation T _C = 25°C Derate above 25°C	PD	65 522	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	1.92	°C/W

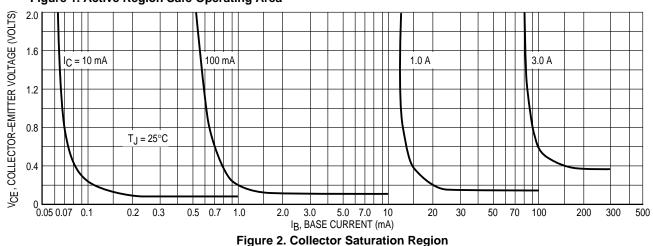
BD801

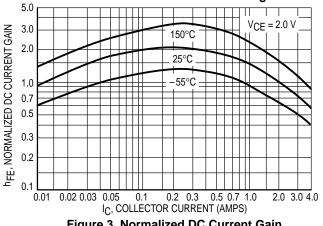
8 AMPERE
POWER TRANSISTORS
NPN SILICON
100 VOLTS
65 WATTS

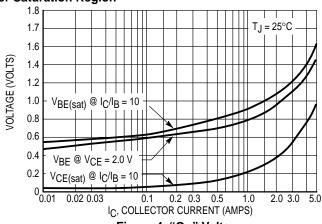

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Sustaining Voltage* (I _C = 0.1 Adc, I _B = 0) (I _C = 0.05 Adc, I _B = 0)	BVCEO	100	_	Vdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)	ICBO	0.1	_	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	_	1.0	mAdc
DC Current Gain (I _C = 1.0 A, V _{CE} = 2.0 V) (I _C = 3.0 A, V _{CE} = 2.0 V)	hFE	30 15		
Collector–Emitter Saturation Voltage* (IC = 3.0 Adc, IB = 0.3 Adc)	VCE(sat)	_	1.0	Vdc
Base–Emitter On Voltage* (IC = 3.0 Adc, VCE = 2.0 Vdc)	VBE(on)	_	1.6	Vdc
Current–Gain Bandwidth Product (IC = 0.25 Adc, VCE = 10 Vdc, f = 1.0 MHz)	f _T	3.0	_	MHz

^{*} Pulse Test: Pulse Width \leq 300 μ s. Duty Cycle \leq 2.0%.




BD801



The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T_J , power–temperature derating must be observed for both steady state and pulse power conditions.

Figure 1. Active Region Safe Operating Area

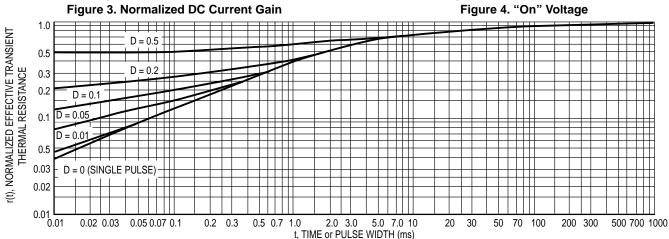
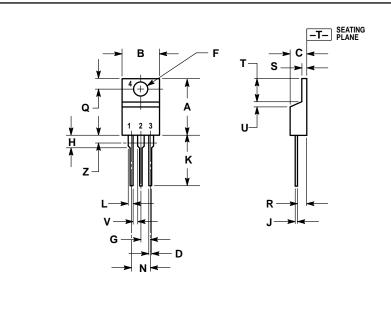



Figure 5. Thermal Response

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
7	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
ø	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
J	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

CASE 221A-06 TO-220AB **ISSUE Y**

BD801

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

