TH SCS-THOMSON
 NHCROELECTRONDCS

HIGH GAIN GENERAL PURPOSE

DESCRIPTION

The BDX33, BDX33A, BDX33B and BDX33C are silicon epitaxial-base NPN transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package. They are intended for use n power linear and switching applications. This complementary PNP types are the BDX34. BDX34A, BDX34B and BDX34C respectively.

INTERNAL SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	$\begin{aligned} & \text { NPN } \\ & \text { *PNP } \end{aligned}$	Value				Unit
			$\begin{aligned} & \text { BDX33 } \\ & \text { BDX34 } \end{aligned}$	$\begin{aligned} & \text { BDX33A } \\ & \text { BDX34A } \end{aligned}$	$\begin{aligned} & \text { BDX33B } \\ & \text { BDX34B } \end{aligned}$	$\begin{aligned} & \text { BDX33C } \\ & \text { BDX34C } \end{aligned}$	
$\mathrm{V}_{\text {cbo }}$	Collector-base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)		45	60	80	100	V
$\mathrm{V}_{\text {CEO }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)		45	60	80	100	V
IC	Collector Current		10				A
$I_{C M}$	Collector Peak Current		15				A
I_{B}	Base Current		0.25				A
P_{101}	Total Power Dissipation at $\mathrm{T}_{\text {case }} \leq 25^{\circ} \mathrm{C}$		70				W
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature		-65 to 150				${ }^{\circ} \mathrm{C}$
T_{1}	Junction Temperature		150				${ }^{\circ} \mathrm{C}$

- For PNP types voltage and current values are negative.

THERMAL DATA

$\mathrm{R}_{\text {th }}$-case	Thermal Resistance Junction-case	Max	1.78	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Íво	Collector Cutoff Current $\left(I_{E}=0\right)$				$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	mA $m A$ $m A$ mA mA mA mA mA
ICEO	Collector Cutoff Current $\left(I_{B}=0\right)$	for BDX33/34 $V_{C B}=22 \mathrm{~V}$ for BDX33A/34A $\quad V_{C B}=30 \mathrm{~V}$ for $\mathrm{BDX} 33 \mathrm{~B} / 34 \mathrm{~B} \quad \mathrm{~V}_{\mathrm{CB}}=40 \mathrm{~V}$ for BDX33C/X34C $\mathrm{V}_{C B}=50 \mathrm{~V}$ $T_{\text {case }}=100^{\circ} \mathrm{C}$ for BDX33/34 $\mathrm{V}_{\mathrm{CB}}=22 \mathrm{~V}$ for BDX33A/34A $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$ for BDX33B/34B $\quad \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}$ for BDX33C/X34C $\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	mA mA
$I_{\text {EBO }}$	Emitter Cutoff Current $\left(I_{C}=0\right)$	$V_{E B}=5 \mathrm{~V}$			5	mA
$\mathrm{V}_{\text {CEO(sus) }}{ }^{\circ}$	Collector-emitter Sustaining Voltage ($\mathrm{l}_{\mathrm{B}}=0$)	$\begin{aligned} & \hline I_{C}=100 \mathrm{~mA} \text { for } \operatorname{BDX33/34} \\ & \text { for } \operatorname{BDX33A} / 34 \mathrm{~A} \\ & \text { for } \operatorname{BDX33B} / 34 \text { B } \\ & \text { for } \operatorname{BDX33C} / \times 34 \mathrm{C} \end{aligned}$	$\begin{gathered} \hline 45 \\ 60 \\ 80 \\ 100 \end{gathered}$			$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
$\mathrm{V}_{\text {CER(sus) }}$ *	Collector-emitter Sustaining Voltage $\left(I_{B}=0 R_{B E}=100 \Omega\right)$	$\begin{array}{ll} I_{C}=100 \mathrm{~mA} & \text { for } \mathbf{B D X 3 3 / 3 4} \\ & \text { for } \mathrm{BDX33A} / 34 \mathrm{~A} \\ & \text { for } \mathrm{BDX33B} / 34 \mathrm{~B} \\ & \text { for } \mathbf{B D X 3 3 C} / 34 \mathrm{C} \end{array}$	$\begin{gathered} \hline 45 \\ 60 \\ 80 \\ 100 \end{gathered}$			$\begin{aligned} & V \\ & v \\ & v \\ & V \end{aligned}$
$\mathrm{V}_{\text {CEV (sus) }}{ }^{\circ}$	Collector-emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{B}}=0 \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$)	$\begin{array}{ll} I_{C}=100 \mathrm{~mA} & \text { for } \mathrm{BDX} 33 / 34 \\ & \text { for } \mathrm{BDX} 33 \mathrm{~A} / 34 \mathrm{~A} \\ & \text { for } \mathrm{BDX33B} / 34 \mathrm{~B} \\ & \text { for } \mathrm{BDX} 33 \mathrm{C} / 34 \mathrm{C} \end{array}$	$\begin{gathered} 45 \\ 60 \\ 80 \\ 100 \end{gathered}$			$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {CE(sat) }}{ }^{\text { }}$	Collector-emitter Saturation Voltage	$\begin{array}{ll} \text { for } \mathrm{BDX} \times 3 / 33 \mathrm{~A} / 34 / 34 \mathrm{~A} \\ \mathrm{I}_{\mathrm{C}}=4 \mathrm{~A} & I_{\mathrm{B}}=8 \mathrm{~mA} \\ \text { for } B D \times 33 \mathrm{~B} / 33 \mathrm{C} / 34 \mathrm{~B} / 34 \mathrm{C} \\ I_{\mathrm{C}}=3 \mathrm{~A} & I_{\mathrm{B}}=6 \mathrm{~mA} \end{array}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	V V
$\mathrm{V}_{\mathrm{BE}}{ }^{\text {- }}$	Base-emitter Voltage	$\begin{array}{ll} \text { for } B D \times 33 / 33 A / 34 / 34 A \\ I_{C}=4 A & V_{C E}=3 \mathrm{~V} \\ \text { for } B D \times 33 B / 33 C / 34 B / 34 C \\ I_{C}=3 A & V_{C E}=3 \mathrm{~V} \end{array}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	v V
$h_{\text {FE }}{ }^{\text {* }}$	DC Current Gain		$\begin{aligned} & 750 \\ & 750 \\ & \hline \end{aligned}$			
$V_{F}{ }^{\text {• }}$	Parallel-diode Forward Voltage	$I_{F}=8 \mathrm{~A}$			4	V
$h_{\text {fe }}$	Smail Signal Current Gain	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \mathrm{~V}_{\text {CE }}=5 \mathrm{Vf}=1 \mathrm{KHz}$	100			

- Pulsed : pulse duration $=300 \mathrm{~ms}$, duty cycle $=1.5 \%$. For PNP types voltage and current values are negative.

Safe Operating Areas.

DC Current Gain (NPN types).

Case Temperature Dissipation Derating Curve.

Collector-emitter Saturation Voltage (NPN types).

DC Transconductance (NPN types).

Saturated Switching Characteristics (NPN types).

Collector-base Capacitance (PNP types).

Collector-emitter Saturation Voltage (NPN types).

Small Signal Current Gain (NPN types).

Collector-base Capacitance (NPN types).

Small Signal Current Gain (PNP types).

Collector-emitter Saturation Voltage (PNP types).

DC Transconductance (PNP types).

Collector-emitter Saturation Voltage (PNP types).

DC Current Gain (PNP types).

Saturated Switching Characteristics (PNP types).

