BDY57

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTORS

DESCRIPTION

The BDY57 and BDY58 are silicon multiepitaxial planar NPN transistors in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

INTERNAL SCHEMATIC DIAGRAM

$5-6841$

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
		BDY57	BDY58	
$\mathrm{V}_{\text {CBO }}$	Collector-base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)	120	160	V
$V_{\text {CEO }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	80	125	V
$V_{\text {EBo }}$	Emitter-base Voltage ($\mathrm{IC}_{\mathrm{C}}=0$)	10		\checkmark
I_{C}	Collector Current	25		A
I_{8}	Base Current	6		A
P_{101}	Total Power Dissipation at $\mathrm{T}_{\text {case }} \leq 25{ }^{\circ} \mathrm{C}$	175		W
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 200		${ }^{\circ} \mathrm{C}$
T_{1}	Junction Temperature	200		${ }^{\circ} \mathrm{C}$

THERMAL DATA

| $R_{\text {th } \text { j-case }}$ | Thermal Resistance Junction-case | Max | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Icbo	Collector Cutoff Current $\left(I_{E}=0\right)$	$V_{C B}=120 \mathrm{~V}$			1	mA
ICEA	Collector Cutoff Current	$\begin{aligned} & \mathrm{V}_{C E}=80 \mathrm{~V} \\ & \mathrm{R}_{B E}=10 \Omega \\ & \mathrm{~T}_{\text {case }}=100{ }^{\circ} \mathrm{C} \end{aligned}$			10	mA
Iebo	Emitter Cutoff Current $\left(I_{C}=0\right)$	$V_{E B}=10 \mathrm{~V}$			0.5	mA
$\mathrm{V}_{\text {CEO(sus) }}{ }^{\circ}$	Collector-emitter Sustaining Voltage	$\begin{aligned} & \text { I } \mathrm{C}=100 \mathrm{~mA} \\ & \text { for BDY } 57 \\ & \text { for BDY58 } \end{aligned}$	$\begin{gathered} 80 \\ 125 \end{gathered}$			$\begin{aligned} & V \\ & V \end{aligned}$
$V_{\text {(BR) }}$ CBo ${ }^{*}$	Collector-base Breakdown Voltage	$\begin{aligned} & I_{C}=5 \mathrm{~mA} \\ & \text { for BDY57 } \\ & \text { for BDY58 } \end{aligned}$	$\begin{aligned} & 120 \\ & 160 \end{aligned}$			$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$V_{\text {(BR)EBO }}{ }^{*}$	Emitter-base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}$	10			V
$V_{C E(\text { (sat }}{ }^{\circ}$	Collector-emitter Saturation Voltage	$I_{C}=10 \mathrm{~A} \quad I_{B}=1 \mathrm{~A}$		0.5	1.4	V
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{\text {- }}$	Base-emitter Saturation Voltage	$I_{C}=10 \mathrm{~A} \quad I_{B}=1 \mathrm{~A}$		1.4	2	V
$h_{\text {FE }}$ *	DC Current Gain	$\begin{array}{ll} \hline \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \\ T_{\text {case }}=-30{ }^{\circ} \mathrm{C} & \\ \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \\ \hline \end{array}$	20 10	15	60	
${ }_{T}$	Transition Frequency	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} & V_{C E}=15 \mathrm{~V} \\ \mathrm{f}=10 \mathrm{MHz} & \end{array}$	7			MHz
ton	Turn-on Time	$\mathrm{IC}_{C}=15 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A}$			1	$\mu \mathrm{S}$
1011	Turn-of Time	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=1.5 \mathrm{~A}$			2	$\mu \mathrm{s}$
	Clamped $\mathrm{E}_{\text {s/b }}$ Collector Current	$\begin{aligned} & V_{\text {(clamp) }}=125 \mathrm{~V} \\ & \mathrm{~L}=500 \mu \mathrm{H} \end{aligned}$	15			A

[^0]
[^0]: - Pulsed : pulse duration $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

