DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC14 September 1995

HILIP

DESCRIPTION

NPN transistor in a SOT89 plastic envelope intended for application in thick and thin-film circuits. It is primarily intended for use in UHF and microwave amplifiers such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analyzers etc.

The transistor features very low intermodulation distortion and high power gain. Due to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
V _{CEO}	collector-emitter voltage	open base	-	15	V
I _C	DC collector current		-	100	mA
P _{tot}	total power dissipation	up to $T_s = 145 \ ^{\circ}C$ (note 1)	-	1	W
f _T	transition frequency	$I_c = 50 \text{ mA}; V_{CE} = 10 \text{ V}; \text{ f} = 500 \text{ MHz};$ $T_j = 25 \text{ °C}$	5.5	-	GHz
C _{re}	feedback capacitance	$I_c = 10 \text{ mA}; V_{CE} = 10 \text{ V}; \text{ f} = 1 \text{ MHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	1.3	-	pF
F	noise figure	$I_c = 50 \text{ mA}; V_{CE} = 10 \text{ V}; Z_s = \text{opt.};$ f = 500 MHz; T _{amb} = 25 °C	3.3	-	dB

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	20	V
V _{CEO}	collector-emitter voltage	open base	_	15	V
V _{EBO}	emitter-base voltage	open collector	-	3.3	V
I _C	DC collector current		-	100	mA
I _{CM}	peak collector current	f > 1 MHz	-	150	mA
P _{tot}	total power dissipation	up to $T_s = 145 \ ^{\circ}C$ (note 1)	_	1	W
T _{stg}	storage temperature		-65	150	°C
Tj	junction temperature		_	175	°C

Note

1. T_s is the temperature at the soldering point of the collector tab.

PINNING

BFQ19

BFQ19

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE
R _{th j-s}	thermal resistance from junction to soldering point	up to $T_s = 145 \ ^\circ C$ (note 1)	30 K/W

Note

1. T_s is the temperature at the soldering point of the collector tab.

CHARACTERISTICS

 $T_j = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 10 V	_	-	100	nA
h _{FE}	DC current gain	I _C = 70 mA; V _{CE} = 10 V	25	80	-	
C _c	collector capacitance	$I_E = i_e = 0; V_{CB} = 10 V; f = 1 MHz$	-	1.6	-	pF
C _e	emitter capacitance	$I_{C} = i_{c} = 0; V_{EB} = 0.5 V; f = 1 MHz$	-	5	-	pF
C _{re}	feedback capacitance	$I_{C} = 10 \text{ mA}; V_{CE} = 10 \text{ V}; \text{ f} = 1 \text{ MHz};$ $T_{amb} = 25 \text{ °C}$	-	1.3	-	pF
f _T	transition frequency	I _C = 70 mA; V _{CE} = 10 V; f = 500 MHz	4.4	5.5	_	GHz
G _{UM}	maximum unilateral power gain (note 1)	I _C = 50 mA; V _{CE} = 10 V; f = 500 MHz; T _{amb} = 25 °C	-	11.5	-	dB
		I _C = 50 mA; V _{CE} = 10 V; f = 800 MHz; T _{amb} = 25 °C	-	7.5	-	dB
F	noise figure	$I_{C} = 50 \text{ mA}; V_{CE} = 10 \text{ V}; Z_{s} = \text{opt.};$ f = 500 MHz; T _{amb} = 25 °C	_	3.3	_	dB

Note

1. G_{UM} is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 \log \frac{|S_{21}|^2}{\left(1 - |S_{11}|^2\right) \left(1 - |S_{22}|^2\right)} \, dB.$$

BFQ19

BFQ19

PACKAGE OUTLINE

Product specification

NPN 5 GHz wideband transistor

BFQ19

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values n of the device at these or at a	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or nay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification imiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.