DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC14 September 1995

HILIP

FEATURES

- High power gain
- Low noise figure
- High transition frequency
- Gold metallization ensures
 excellent reliability.

DESCRIPTION

The BFR520 is an npn silicon planar epitaxial transistor, intended for applications in the RF frontend in wideband applications in the GHz range, such as analog and digital cellular telephones, cordless telephones (CT1, CT2, DECT, etc.), radar detectors, pagers and satellite TV tuners (SATV) and repeater amplifiers in fibre-optic systems.

The transistor is encapsulated in a plastic SOT23 envelope.

PINNING

PIN	DESCRIPTION		
	Code: N28		
1	base		
2	emitter		
3	collector		

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage		_	_	20	V
V _{CES}	collector-emitter voltage	$R_{BE} = 0$	_	_	15	V
I _C	DC collector current		_	_	70	mA
P _{tot}	total power dissipation	up to $T_s = 97 \text{ °C}$; note 1	_	_	300	mW
h _{FE}	DC current gain	I _C = 20 mA; V _{CE} = 6 V	60	120	250	
C _{re}	feedback capacitance	$I_{C} = i_{c} = 0; V_{CB} = 6 V; f = 1 MHz$	_	0.4	_	pF
f _T	transition frequency	I _C = 20 mA; V _{CE} = 6 V; f = 1 GHz	_	9	_	GHz
G _{UM}	maximum unilateral power gain	I _C = 20 mA; V _{CE} = 6 V; T _{amb} = 25 °C; f = 900 MHz	-	15	-	dB
		I _C = 20 mA; V _{CE} = 6 V; T _{amb} = 25 °C; f = 2 GHz	-	9	-	dB
S ₂₁ ²	insertion power gain	I _C = 20 mA; V _{CE} = 6 V; T _{amb} = 25 °C; f = 900 MHz	13	14	-	dB
F	noise figure	$\Gamma_{s} = \Gamma_{opt}; I_{C} = 5 \text{ mA}; V_{CE} = 6 \text{ V};$ $T_{amb} = 25 \text{ °C}; f = 900 \text{ MHz}$	-	1.1	1.6	dB
		$\begin{split} \Gamma_{\text{s}} &= \Gamma_{\text{opt}}; \text{ I}_{\text{C}} = 20 \text{ mA}; \text{ V}_{\text{CE}} = 6 \text{ V}; \\ T_{\text{amb}} &= 25 \text{ °C}; \text{ f} = 900 \text{ MHz} \end{split}$	-	1.6	2.1	dB
		$\Gamma_{s} = \Gamma_{opt}$; I _C = 5 mA; V _{CE} = 8 V; T _{amb} = 25 °C; f = 2 GHz	-	1.9	-	dB

Note

1. T_s is the temperature at the soldering point of the collector tab.

Product specification

BFR520

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	20	V
V _{CES}	collector-emitter voltage	$R_{BE} = 0$	-	15	V
V _{EBO}	emitter-base voltage	open collector	-	2.5	V
I _C	DC collector current		_	70	mA
P _{tot}	total power dissipation	up to $T_s = 97 \ ^{\circ}C$; note 1	-	300	mW
T _{stg}	storage temperature		-65	150	°C
Т _ј	junction temperature		-	175	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
R _{th j-s}	from junction to soldering point (note 1)	260 K/W

Note

1. T_s is the temperature at the soldering point of the collector tab.

BFR520

CHARACTERISTICS

 $T_j = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	$I_{E} = 0; V_{CB} = 6 V$	_	-	50	nA
h _{FE}	DC current gain	I _C = 20 mA; V _{CE} = 6 V	60	120	250	
C _e	emitter capacitance	$I_{C} = i_{c} = 0; V_{EB} = 0.5 V; f = 1 MHz$	-	1	-	pF
C _c	collector capacitance	$I_E = i_e = 0; V_{CB} = 6 V; f = 1 MHz$	-	0.5	-	pF
C _{re}	feedback capacitance	I _C = 0; V _{CB} = 6 V; f = 1 MHz	-	0.4	-	pF
f _T	transition frequency	I _C = 20 mA; V _{CE} = 6 V; f = 1 GHz	-	9	-	GHz
G _{UM}	maximum unilateral power gain (note 1)	$I_{C} = 20 \text{ mA}; V_{CE} = 6 \text{ V};$ $T_{amb} = 25 \text{ °C}; \text{ f} = 900 \text{ MHz}$	-	15	-	dB
		$I_C = 20 \text{ mA}; V_{CE} = 6 \text{ V};$ $T_{amb} = 25 \text{ °C}; \text{ f} = 2 \text{ GHz}$	-	9	-	dB
S ₂₁ ²	insertion power gain	$I_{C} = 20 \text{ mA}; V_{CE} = 6 \text{ V};$ $T_{amb} = 25 \text{ °C}; \text{ f} = 900 \text{ MHz}$	13	14	-	dB
F	noise figure	$\Gamma_{s} = \Gamma_{opt}; I_{C} = 5 \text{ mA}; V_{CE} = 6 \text{ V};$ $T_{amb} = 25 \text{ °C}; f = 900 \text{ MHz}$	-	1.1	1.6	dB
			-	1.6	2.1	dB
			-	1.9	-	dB
P _{L1}	output power at 1 dB gain compression	$I_C = 20$ mA; $V_{CE} = 6$ V; $R_L = 50$ Ω; $T_{amb} = 25$ °C; f = 900 MHz	-	17	-	dBm
ITO	third order intercept point	note 2	-	26	-	dBm

Notes

1. G_{UM} is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 \log \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)} dB.$$

 $\begin{array}{ll} \text{2.} & \text{I}_{\text{C}} = 20 \text{ mA}; \text{ V}_{\text{CE}} = 6 \text{ V}; \text{ R}_{\text{L}} = 50 \ \Omega; \text{ T}_{\text{amb}} = 25 \ ^{\circ}\text{C}; \\ & \text{f}_{\text{p}} = 900 \text{ MHz}; \ \text{f}_{\text{q}} = 902 \text{ MHz}; \\ & \text{measured at } f_{(2\text{p}-\text{q})} = 898 \text{ MHz and } f_{(2\text{q}-\text{p})} = 904 \text{ MHz}. \end{array}$

BFR520

NPN 9 GHz wideband transistor

PACKAGE OUTLINE

Product specification

NPN 9 GHz wideband transistor

BFR520

DEFINITIONS

Data Sheet Status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification This data sheet contains preliminary data; supplementary data may be published lat			
Product specification	This data sheet contains final product specifications.		
Limiting values			
more of the limiting values m of the device at these or at a	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or hay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification miting values for extended periods may affect device reliability.		

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.